CAREER: Controlling Responsive Biointerfaces by Understanding Elastin Self-Assembled Monolayers
职业:通过了解弹性蛋白自组装单层来控制响应生物界面
基本信息
- 批准号:2045033
- 负责人:
- 金额:$ 52.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-15 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYThe development of next-generation health monitoring and treatment devices requires an ability to design biomaterial interfaces with predictable properties, and an effective workforce to make discoveries and propel technological advances. This project will address these needs by 1) developing a fundamental understanding of peptide-based self-assembled monolayers and designing these interfaces to have desired biomaterial properties; and 2) helping to create a diverse workforce with expertise in biomaterials. The fundamental knowledge in peptide self-assembled monolayers gained in this project can help speed the development of implantable technologies for monitoring and treating non-communicable diseases, which currently cause more than 60% of annual worldwide deaths and trillions of dollars in economic losses. Specifically, this project will impact the fields of drug delivery, sensors, and capture-release applications. In addition, an innovative education program is being developed which uses peptides as a platform to increase high school, undergraduate, and graduate students’ self-efficacy in areas related to engineering and design, and positively impact attitudes toward social responsibility at the university level. Self-efficacy is a metric positively related to academic achievement, persistence, and engagement in academic work. Graduate and undergraduate students will learn industry-relevant project planning skills through a hands-on peptide engineering project and then, in a unique service learning experience, lead high school students in related projects. This effort is in partnership with a local high school where over 90% of the students are from underrepresented minority groups. PART 2: TECHNICAL SUMMARYThe main objectives of this project are to 1) develop models that predict the properties of peptide self-assembled monolayers; and 2) increase self-efficacy in performing engineering tasks across a diverse group of high-school, undergraduate and graduate students. The research program will focus on fundamental understanding of peptide self-assembled monolayer transition temperature, which controls stimuli-responsive behavior; effective surface coverage, which controls access to the substrate; and self-assembled monolayer kinetic assembly, which controls these biomaterial properties. Elastin-derived sequences will be studied because elastin is known to have stimuli-responsive properties and has been proposed for a broad range of biomaterials applications. Currently, there are no established models to predict elastin self-assembled monolayer responsive behavior, effective surface coverage, or kinetic assembly. This project will fill these gaps in scientific understanding by using a combination of peptide design and techniques such as quartz crystal microbalance with dissipation monitoring, cyclic voltammetry, and time-resolved attenuated total reflection surface-enhanced infrared absorption spectroscopy. The research program will be coupled with new interactive service learning initiatives that will engage students at the high school, undergraduate, and graduate levels. A unique undergraduate-/graduate-level project planning learning module will be innovated to encourage students to use their peptide engineering knowledge to create pedagogical content for an outreach program with East Cleveland female high school students to teach valuable research and engineering skills. Student self-efficacy will be measured at all levels using validated survey instruments to assess the success of the education programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术总结,下一代健康监测和治疗设备的开发需要具有可预测性能的生物材料接口的能力,并有效的劳动力可以进行发现和推动技术进步。该项目将通过1)对基于肽的自组装单层的基本了解来满足这些需求,并设计这些界面以具有所需的生物材料特性; 2)帮助创建具有生物材料专业知识的潜水员劳动力。在该项目中获得的肽自组装单层的基本知识可以帮助加快监测和治疗非通信疾病的植入式技术的发展,目前,该疾病的年度死亡人数超过60%,占经济损失的数万亿美元。具体而言,该项目将影响药物输送,传感器和捕获释放应用的领域。此外,正在制定一项创新的教育计划,该计划将Petides作为一个平台,以增加与工程和设计有关的领域的高中,本科和研究生的自我效能,并对大学一级的社会责任产生积极影响。自我效能感与学术成就,持久性和在学术工作中的参与呈正相关。研究生和本科生将通过动手肽工程项目学习与行业相关的项目计划技能,然后在独特的服务学习经验中,带领高中生进行相关项目。这项工作与当地高中合作,其中超过90%的学生来自代表性不足的少数群体。第2部分:技术总结该项目的主要目标是1)开发预测肽自组装单层的特性的模型; 2)提高在高中,本科生和研究生的潜水员群体中执行工程任务的自我效能。该研究计划将着重于对肽自组装的单层过渡温度的基本理解,该温度控制刺激反应性行为。有效的表面覆盖范围,可以控制对基材的访问;和自组装的单层动力学组装,它控制着这些生物材料。弹性蛋白衍生的序列将进行研究,因为已知弹性蛋白具有刺激性响应特性,并已针对广泛的生物材料应用提出。当前,尚无既定模型来预测弹性蛋白自组装的单层响应行为,有效的表面覆盖范围或动力学组装。该项目将通过使用肽设计和技术(例如石英晶体微生物)与耗散监测,环状伏安法和时间分辨的总反射表面增强效率的结合来填补这些空白。该研究计划将与新的互动服务学习计划相结合,该计划将吸引高中,本科和研究生水平的学生。一个独特的本科/研究生级项目计划学习模块将被感染,以鼓励学生使用其肽工程知识来与东克利夫兰女子高中生的外展计划创建教学内容,以教授有价值的研究和工程技能。学生的自我效能感将使用经过验证的调查工具在各个层面上进行衡量,以评估教育计划的成功。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响评估标准通过评估来获得的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantification of the effects of hydrophobicity and mass loading on the effective coverage of surface-immobilized elastin-like peptides
量化疏水性和质量负载对表面固定弹性蛋白样肽有效覆盖的影响
- DOI:10.1016/j.bej.2021.107933
- 发表时间:2021
- 期刊:
- 影响因子:3.9
- 作者:Su, Zihang;Kim, ChulOong;Renner, Julie N.
- 通讯作者:Renner, Julie N.
Engineered Polypeptides as a Tool for Controlling Catalytic Active Janus Particles
- DOI:10.1021/acsaenm.3c00263
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Marola W. Issa;Diego Calderon;Olivia Kamlet;S. Asaei;J. Renner;C. Wirth
- 通讯作者:Marola W. Issa;Diego Calderon;Olivia Kamlet;S. Asaei;J. Renner;C. Wirth
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julie Renner其他文献
Intubation orotrachéale : à partir de deux théâtres d’opérations extérieures, épidémiologie des intubations difficiles prévues et imprévues
- DOI:
10.1016/j.anrea.2017.07.007 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:
- 作者:
Audrey Jarrassier;Pierre Pasquier;Anne Chrisment;Julie Renner;Albin Vichard;Patrice Ramiara;Stéphane Mérat - 通讯作者:
Stéphane Mérat
Flame-based processing as a practical approach for manufacturing hydrogen evolution electrodes
- DOI:
10.1016/j.jpowsour.2014.08.013 - 发表时间:
2014-12-20 - 期刊:
- 影响因子:
- 作者:
Justin Roller;Julie Renner;Haoran Yu;Chris Capuano;Tony Kwak;Yang Wang;C. Barry Carter;Kathy Ayers;William E. Mustain;Radenka Maric - 通讯作者:
Radenka Maric
Julie Renner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julie Renner', 18)}}的其他基金
Tuning the Interactions between Biomolecules and Surfaces via a Peptide Self-Assembled Monolayer Framework
通过肽自组装单层框架调节生物分子和表面之间的相互作用
- 批准号:
2026259 - 财政年份:2020
- 资助金额:
$ 52.3万 - 项目类别:
Standard Grant
相似国自然基金
高马赫数发动机密封界面液膜急变跨速汽化机理与型槽热平衡控制设计
- 批准号:52375212
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于矩阵方法的电价博弈分析与控制策略研究
- 批准号:62303170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分布式电驱动智能车辆主动交互机理及控制机制研究
- 批准号:52372377
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
面向在轨大型结构的空间机器人多机协同接管控制方法研究
- 批准号:52305036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fundamental study for controlling the primary nucleation using solvation of temperature-responsive polymer
利用温度响应聚合物溶剂化控制初次成核的基础研究
- 批准号:
23K13587 - 财政年份:2023
- 资助金额:
$ 52.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering molecular mechanisms controlling age-associated uterine adaptabilityto pregnancy
破译控制与年龄相关的子宫妊娠适应性的分子机制
- 批准号:
10636576 - 财政年份:2023
- 资助金额:
$ 52.3万 - 项目类别:
Design of temperature-responsive nanocapsules controlling permeation of water-soluble compounds
控制水溶性化合物渗透的温度响应型纳米胶囊的设计
- 批准号:
21K05202 - 财政年份:2021
- 资助金额:
$ 52.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Physiologic- and pathophysiologic-responsive brainstem neurons controlling appetite
控制食欲的生理和病理生理反应脑干神经元
- 批准号:
451707 - 财政年份:2021
- 资助金额:
$ 52.3万 - 项目类别:
Operating Grants
Synthesis of stimuli-responsive nanocomposite polymer particles for controlling the dispersion of nano-inclusions
用于控制纳米夹杂物分散的刺激响应性纳米复合聚合物颗粒的合成
- 批准号:
20K22526 - 财政年份:2020
- 资助金额:
$ 52.3万 - 项目类别:
Grant-in-Aid for Research Activity Start-up