CAREER: Vapor-Liquid Separation for Sustainable Condensation Heat Transfer

职业:用于可持续冷凝传热的汽液分离

基本信息

  • 批准号:
    2044348
  • 负责人:
  • 金额:
    $ 51.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Improving the performance of condensation heat transfer reduces size, weight, and cost in refrigeration, air conditioning, heat exchangers, and thermal management systems. To achieve a large heat transfer coefficient, condensates on a surface must be rapidly removed to provide liquid-free areas for vapor-liquid phase change to occur. The ideal surface is one that provides a large heat transfer area and rapidly removes condensates for sustainable condensation. Present challenges include the removal of ultralow surface tension refrigerants and the lack of long-term durability of engineered surfaces. The goal of this CAREER project is to address those challenges by developing a vapor-liquid separation process to advance condensation heat transfer of ultralow surface tension fluids, and integrate the new knowledge into education to train the next generation of heat transfer leaders.The objective of this project is to achieve: (1) dropwise condensation of ultralow surface tension fluids (e.g., R134a), and (2) sustainable vapor-liquid separation that provides large liquid-free areas for rapid condensation. The proposed approach will use the newly developed durable quasi-liquid surface to achieve dropwise condensation and rapid removal of ultralow surface tension condensates. The super slippery quasi-liquid surface will prevent the dropwise to filmwise transition. To achieve a high heat transfer performance, the vapor and liquid will be separated on a slippery rough surface with quasi-liquid lubrication which will provide a large surface area for condensation. X-ray nano-imaging will be used to investigate the nucleation and liquid removal inside microstructures of the slippery rough surfaces. The surface durability and sustainable condensation performance of quasi-liquid lubricated microstructures will be studied under various subcooling and shear stress conditions. The preliminary results in heat transfer and materials fabrication provide a solid foundation to execute those activities. The proposed project is in line with the PI’s long-term career goal to address heat transfer challenges by incorporating learning from multidisciplinary areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
提高冷凝传热性能可以减小制冷、空调、热交换器和热管理系统的尺寸、重量和成本。为了实现较大的传热系数,必须快速去除表面上的冷凝物以提供无液体区域。理想的表面是一种能够提供大的传热面积并快速去除冷凝物以实现可持续冷凝的表面。目前的挑战包括去除超低表面张力制冷剂和缺乏。该职业项目的目标是通过开发汽液分离工艺来解决这些挑战,以促进超低表面张力流体的冷凝传热,并将新知识融入教育中以培训下一代。该项目的目标是实现:(1) 超低表面张力流体(例如 R134a)的逐滴冷凝,以及 (2) 可持续的汽液分离,提供大量所提出的方法将使用新开发的耐用准液体表面来实现滴状冷凝和超低表面张力冷凝物的快速去除,超滑的准液体表面将防止滴状向膜状过渡。实现高传热性能,蒸汽和液体将在具有准液体润滑的光滑粗糙表面上分离,这将为冷凝提供大的表面积。 X射线纳米成像将用于研究光滑粗糙表面微观结构内部的成核和液体去除,对各种过冷和剪切应力条件下的准液体润滑微观结构的表面耐久性和可持续凝结性能进行初步研究。传热和材料制造方面的成果为执行这些活动奠定了坚实的基础。拟议的项目符合 PI 的长期职业目标,即通过结合多学科的学习来应对传热挑战。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microchannel-elevated micromembrane for sustainable phase-separation condensation
  • DOI:
    10.1016/j.joule.2022.11.010
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    39.8
  • 作者:
    Li Shan;Zongqi Guo;D. Monga;Dylan Boylan;X. Dai
  • 通讯作者:
    Li Shan;Zongqi Guo;D. Monga;Dylan Boylan;X. Dai
Quasi-Liquid Surfaces for Sustainable High-Performance Steam Condensation
  • DOI:
    10.1021/acsami.2c00401
  • 发表时间:
    2022-03-23
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Monga, Deepak;Guo, Zongqi;Dai, Xianming
  • 通讯作者:
    Dai, Xianming
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xianming Dai其他文献

Xianming Dai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xianming Dai', 18)}}的其他基金

Collaborative Research: Enhanced electricity generation through liquid flow over durable slippery Surfaces
合作研究:通过液体在耐用的光滑表面上流动来增强发电
  • 批准号:
    2202710
  • 财政年份:
    2022
  • 资助金额:
    $ 51.71万
  • 项目类别:
    Standard Grant
EAGER: Experimental Study of Condensation Enhancement on Durable Slippery Surfaces
EAGER:耐用光滑表面上凝结增强的实验研究
  • 批准号:
    1929677
  • 财政年份:
    2019
  • 资助金额:
    $ 51.71万
  • 项目类别:
    Standard Grant

相似国自然基金

汽芯同面结构超薄均热板内腔的液体传输机制及创新设计研究
  • 批准号:
    52305258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
来流含气条件下旋板泵内空化演化及气-液-汽耦合作用机制
  • 批准号:
    52376031
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
核主泵汽液两相界面微观运动机理及全特性瞬变流动特性研究
  • 批准号:
    52371322
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于电沉积序构毛细芯的受限空间汽液相变传热强化机理
  • 批准号:
    52276095
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
仿生有序多孔介质强化太阳能海水淡化的汽液两相流机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: A coupled multiscale study of phase change dynamics at curved liquid-vapor interfaces
职业:弯曲液-汽界面相变动力学的耦合多尺度研究
  • 批准号:
    2339757
  • 财政年份:
    2024
  • 资助金额:
    $ 51.71万
  • 项目类别:
    Continuing Grant
Mechanisms of Basal Cell Dysfunction in Chemical-induced Bronchiolitis Obliterans
化学诱发闭塞性细支气管炎基底细胞功能障碍的机制
  • 批准号:
    10693404
  • 财政年份:
    2022
  • 资助金额:
    $ 51.71万
  • 项目类别:
Mechanisms of Basal Cell Dysfunction in Chemical-induced Bronchiolitis Obliterans
化学诱发闭塞性细支气管炎基底细胞功能障碍的机制
  • 批准号:
    10523626
  • 财政年份:
    2022
  • 资助金额:
    $ 51.71万
  • 项目类别:
Controlling Naturally-Derived Polymer Enzymatic Degradation: A Plasma-Enhanced Chemical Vapor Deposition Approach
控制天然聚合物酶降解:等离子体增强化学气相沉积方法
  • 批准号:
    10654781
  • 财政年份:
    2021
  • 资助金额:
    $ 51.71万
  • 项目类别:
Controlling Naturally-Derived Polymer Enzymatic Degradation: A Plasma-Enhanced Chemical Vapor Deposition Approach
控制天然聚合物酶降解:等离子体增强化学气相沉积方法
  • 批准号:
    10201333
  • 财政年份:
    2021
  • 资助金额:
    $ 51.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了