GCR: Collaborative Research: Plasma-Biofilm Interactions at the Intersection of Physics, Chemistry, Biology and Engineering
GCR:合作研究:物理、化学、生物学和工程学交叉点的等离子体-生物膜相互作用
基本信息
- 批准号:2020695
- 负责人:
- 金额:$ 281万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Low temperature plasmas – ionized gases – operating at atmospheric pressure are a copious source of reactive oxygen and nitrogen species (RONS). Plasma-produced RONS have the ability to combat antimicrobial resistant bacteria and serve as a novel approach to cancer treatment. Reduction-oxidation (redox) processes play a major role in the cellular life cycle and are the metabolic driving force for aerobic biology. Plasma-induced redox chemistry in cells can potentially regulate these processes. This project will investigate the capability of plasma for control of biofilms – coordinated functional communities of bacteria. Physically removing biofilms can be extremely difficult, and antibiotics and topical decontamination products are largely ineffective due to multipronged biofilm defenses. The control of biofilms has become a grand societal challenge due to their exceptionally broad range of use and impact, from environmental engineering to biomedical applications. As an example, biofilm induced corrosion is a severe problem for world maritime industries. Biofilms and antimicrobial resistance are also major issues in the food industry and in medicine. Antimicrobial resistance is predicted to become the number one health problem in 2050 and the Centers for Disease Control and Prevention reports that every 15 minutes one person in the US dies because of an infection that antibiotics cannot treat effectively. Although the consequences of biofilms are typically thought of as being negative, biofilm bacteria are also extensively used in bioreactors with beneficial applications ranging from water remediation to energy harvesting. This project combines several research advances in plasma science, microbiology and engineering – each significant in their own right – into a convergent, transformative project to investigate fundamental plasma-induced biofilm processes.The goal of the project is to develop the science required to understand the impact of plasmas on communities of living cells. Plasma treatment of organisms can produce non-local effects and systemic responses which are currently not understood. In complex organisms, such as animal models, it is difficult to quantify both the initiating plasma dose to individual cells and to diagnose consequences of the exposure – components of animal models are simply too inter-related. The proposed research will address the critical need to quantify plasma effects on organisms by developing the science required to obtain a fundamental understanding of plasma interactions within a biofilm – a simpler system of communicating organisms that allows access to diagnostics and modeling. Furthermore, model biofilm bacteria (e.g. Pseudomonas aeruginosa) are genetically tractable, lending themselves to detailed studies of plasma-induced effects at a molecular level. This improvement in understanding of systemic effects of plasma will be accomplished by investigating the biological response of plasma-treated, biofilm-associated, bacterial cells and their intercellular communication through the extra-cellular environment. The project will develop this new and convergent research frontier, combining plasma science, microbiology, and state-of-the-art printing methodologies, using biofilms as a model system. While initially focusing on global biofilm response to the plasma treatment, the project will advance plasma and 3D printing frontiers to develop highly controlled spatially-resolved experiments that could ultimately enable the treatment of a single bacterium cell in a biofilm and track the associated local and non-local biological impacts. The societal benefits of this research will be the ability to manipulate the growth and character of biofilms – for example, to eliminate biofilms where they are not desired, or to enhance their proliferation where biofilms are a desired product.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在大气压下运行的低温等离子体(电离气体)是活性氧和氮物种 (RONS) 的丰富来源,能够对抗抗菌药物耐药细菌,并可作为一种新的氧化还原方法。 (氧化还原)过程在细胞生命周期中发挥着重要作用,是细胞中有氧生物学的代谢驱动力,该项目将研究这些过程。等离子体控制生物膜的能力 - 物理去除生物膜的功能极其困难,并且由于多管齐下的生物膜防御,抗生素和局部去污产品基本上无效。生物膜的控制已成为一项重大的社会挑战。其用途和影响极其广泛,从环境工程到生物医学应用,例如,生物膜引起的腐蚀是世界海运业的一个严重问题,生物膜和抗菌素耐药性也是食品中的主要问题。预计到 2050 年,抗生素耐药性将成为头号健康问题,美国疾病控制与预防中心报告称,美国每 15 分钟就有一人因抗生素无法有效治疗的感染而死亡。生物膜细菌通常被认为是负面的,生物膜细菌也主要用于生物反应器,具有从水修复到能量收集的有益应用,该项目结合了等离子体科学、微生物学和工程学的多项研究进展——每一项都具有重要意义。其本身就是一个融合的、变革性的项目,以研究基本的等离子体诱导的生物膜过程。该项目的目标是发展所需的科学,以了解等离子体对活细胞群落的影响。等离子体处理生物体可以产生非生物膜。 - 目前尚不清楚的复杂生物体(例如动物模型)中,很难量化单个细胞的血浆初始剂量并诊断暴露的后果 - 动物模型的组成部分太复杂了。相关的研究将解决。迫切需要通过发展对生物膜内等离子体相互作用的基本了解来量化等离子体对生物体的影响——一个更简单的生物体通讯系统,可以进行诊断和建模。此外,模型生物膜细菌(例如铜绿假单胞菌)是遗传上易于处理,有助于在分子水平上详细研究等离子体引起的效应,这将通过研究等离子体处理的生物膜相关细菌细胞及其生物反应来实现对等离子体系统效应的理解的改进。该项目将结合等离子体科学、微生物学和最先进的印刷方法,利用生物膜作为模型系统,开发这一新的融合研究前沿。为了响应等离子体处理,该项目将推进等离子体和 3D 打印前沿,开发高度控制的空间分辨实验,最终能够处理生物膜中的单个细菌细胞,并跟踪相关的局部和非局部生物这项研究的社会效益将是能够控制生物膜的生长和特性——例如,在不需要的地方形成生物膜,或者在需要生物膜的地方增强其增殖。该奖项反映了 NSF 的法定使命。通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D printed microfluidics: advances in strategies, integration, and applications
3D 打印微流体:策略、集成和应用方面的进步
- DOI:10.1039/d2lc01177h
- 发表时间:2023-03
- 期刊:
- 影响因子:6.1
- 作者:Su, Ruitao;Wang, Fujun;McAlpine, Michael C.
- 通讯作者:McAlpine, Michael C.
The 2022 Plasma Roadmap: low temperature plasma science and technology
2022年等离子体路线图:低温等离子体科学与技术
- DOI:10.1088/1361-6463/ac5e1c
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Adamovich, I;Agarwal, S;Ahedo, E;Alves, L L;Baalrud, S;Babaeva, N;Bogaerts, A;Bourdon, A;Bruggeman, P J;Canal, C;et al
- 通讯作者:et al
Grand challenges in low temperature plasmas
低温等离子体的巨大挑战
- DOI:10.3389/fphy.2022.1040658
- 发表时间:2022-10-14
- 期刊:
- 影响因子:0
- 作者:Xinpei Lu;P. Bruggeman;S. Reuter;G. Naidis;A. Bogaerts;M. Laroussi;M. Keidar;É. Robert;J. Pouvesle;Dawei Liu;K. Ostrikov
- 通讯作者:K. Ostrikov
Plasma‐induced inactivation of Staphylococcus aureus biofilms: The role of atomic oxygen and comparison with disinfectants and antibiotics
等离子体诱导的金黄色葡萄球菌生物膜灭活:原子氧的作用以及与消毒剂和抗生素的比较
- DOI:10.1002/ppap.202200147
- 发表时间:2022-10
- 期刊:
- 影响因子:3.5
- 作者:Nandula, Seshagiri R.;Kondeti, Vighneswara S. S. K.;Phan, Chi;Wang, Jianan;Penningroth, Mitchell R.;Granick, Jennifer L.;Bruggeman, Peter J.;Hunter, Ryan C.
- 通讯作者:Hunter, Ryan C.
Non-Thermal Plasma as a Novel Strategy for Treating or Preventing Viral Infection and Associated Disease
非热等离子体作为治疗或预防病毒感染及相关疾病的新策略
- DOI:10.3389/fphy.2021.683118
- 发表时间:2021-06-01
- 期刊:
- 影响因子:0
- 作者:Hager S. G. Mohamed;G. Nayak;N. Rendine;B. Wigdahl;F. Krebs;P. Bruggeman;V;ana Miller;ana
- 通讯作者:ana
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Bruggeman其他文献
Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric-pressure N2 and N2/H2O mixtures
大气压 N2 和 N2/H2O 混合物中纳秒脉冲放电的时间分辨发射光谱
- DOI:
10.1088/0022-3727/45/34/345201 - 发表时间:
2012-08-29 - 期刊:
- 影响因子:0
- 作者:
van der Rm Ruud Horst;T. Verreycken;V. Veldhuizen;Peter Bruggeman - 通讯作者:
Peter Bruggeman
Absolute OH density measurements in an atmospheric pressure dc glow discharge in air with water electrode by broadband UV absorption spectroscopy
通过宽带紫外吸收光谱法利用水电极测量空气中大气压直流辉光放电中的绝对 OH 密度
- DOI:
10.1088/0022-3727/48/42/424008 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Qing Xiong;Zhiqiang Yang;Peter Bruggeman - 通讯作者:
Peter Bruggeman
Stability of a coupling technique for partitioned solvers in FSI applications
FSI 应用中分区求解器耦合技术的稳定性
- DOI:
10.1016/j.compstruc.2008.05.005 - 发表时间:
2008-12-01 - 期刊:
- 影响因子:4.7
- 作者:
J. Degroote;Peter Bruggeman;R. Haelterman;J. Vierendeels - 通讯作者:
J. Vierendeels
Catalytic hydrodeoxygenation of anisole over nickel supported on plasma treated alumina–silica mixed oxides
- DOI:
10.1039/c7ra02594g - 发表时间:
2017-06 - 期刊:
- 影响因子:3.9
- 作者:
Hamed Taghvaei;Mohammad Reza Rahimpour;Peter Bruggeman - 通讯作者:
Peter Bruggeman
Temporally resolved ozone distribution of a time modulated RF atmospheric pressure argon plasma jet: flow, chemical reaction, and transient vortex
时间调制射频大气压氩等离子体射流的时间解析臭氧分布:流动、化学反应和瞬态涡流
- DOI:
10.1088/0963-0252/24/4/045015 - 发表时间:
2015-07-20 - 期刊:
- 影响因子:3.8
- 作者:
S. Zhang;A. Sobota;V. Veldhuizen;Peter Bruggeman;Peter Bruggeman - 通讯作者:
Peter Bruggeman
Peter Bruggeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Bruggeman', 18)}}的其他基金
NSF-DFG Confine: Plasma-Catalysis in Confined Spaces for Cold Start NOx Abatement in Automotive Exhaust
NSF-DFG Confine:密闭空间中的等离子体催化用于冷启动汽车尾气中的氮氧化物减排
- 批准号:
2234270 - 财政年份:2023
- 资助金额:
$ 281万 - 项目类别:
Standard Grant
Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
- 批准号:
2318493 - 财政年份:2023
- 资助金额:
$ 281万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Plasma-Liquid Interactions Through Controlled Plasma-Microdroplet Experiments and Modeling
合作研究:通过受控等离子体-微滴实验和建模了解等离子体-液体相互作用
- 批准号:
1903151 - 财政年份:2019
- 资助金额:
$ 281万 - 项目类别:
Standard Grant
2018 Plasma Processing Science: Fundamental Insights in Plasma Processes
2018 等离子体加工科学:等离子体工艺的基本见解
- 批准号:
1824150 - 财政年份:2018
- 资助金额:
$ 281万 - 项目类别:
Standard Grant
Collaborative Research: SusChEM: Mechanistic origins of synergetic effects in plasma catalysis
合作研究:SusChEM:等离子体催化协同效应的机制起源
- 批准号:
1703439 - 财政年份:2017
- 资助金额:
$ 281万 - 项目类别:
Standard Grant
2016 Plasma Processing Science: Plasmas with Complex Interactions: Exploiting the Non-Equilibrium.
2016 等离子体处理科学:具有复杂相互作用的等离子体:利用非平衡。
- 批准号:
1615381 - 财政年份:2016
- 资助金额:
$ 281万 - 项目类别:
Standard Grant
2016 Plasma Processing Science: Plasmas with Complex Interactions: Exploiting the Non-Equilibrium.
2016 等离子体处理科学:具有复杂相互作用的等离子体:利用非平衡。
- 批准号:
1615381 - 财政年份:2016
- 资助金额:
$ 281万 - 项目类别:
Standard Grant
Unraveling the Unique Properties of Transient Discharges in Bubbles and Liquid Water
揭示气泡和液态水中瞬态放电的独特性质
- 批准号:
1500135 - 财政年份:2015
- 资助金额:
$ 281万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: GCR: Growing a New Science of Landscape Terraformation: The Convergence of Rock, Fluids, and Life to form Complex Ecosystems Across Scales
合作研究:GCR:发展景观改造的新科学:岩石、流体和生命的融合形成跨尺度的复杂生态系统
- 批准号:
2426095 - 财政年份:2024
- 资助金额:
$ 281万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Scaling-Up Transformative Adaptation through Socio-Agroclimatology
合作研究:GCR:通过社会农业气候学扩大变革性适应
- 批准号:
2317820 - 财政年份:2023
- 资助金额:
$ 281万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
- 批准号:
2317878 - 财政年份:2023
- 资助金额:
$ 281万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Developing Integrated Agroecological Renewable Energy Systems through Convergent Research
合作研究:GCR:通过融合研究开发综合农业生态可再生能源系统
- 批准号:
2317983 - 财政年份:2023
- 资助金额:
$ 281万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Common Pool Resource Theory as a Scalable Framework for Catalyzing Stakeholder-Driven Solutions to the Freshwater Salinization Syndrome
合作研究:GCR:公共池资源理论作为催化利益相关者驱动的淡水盐化综合症解决方案的可扩展框架
- 批准号:
2312326 - 财政年份:2023
- 资助金额:
$ 281万 - 项目类别:
Continuing Grant