CAREER: Fundamental Chemistry of Combustion Intermediates: Cyclic Ethers

职业:燃烧中间体的基础化学:环醚

基本信息

项目摘要

The U.S. Energy Information Agency predicts that portion of combustion-derived energy consumed by the transportation sector over the next several decades remains strikingly similar to that in 2020, with hydrocarbons and biofuels providing about ninety-seven per cent. Concurrent with other technologies, continued development of sustainable combustion systems for transportation is a high priority for the United States. Despite numerous advancements over the years, including drastic reductions in emissions and improvements in fuel economy, significant scientific challenges still remain on development of sustainable and low-carbon-intensive energy sources. Improvements in the efficiency of combustion systems is predicated on an understanding of chemical reactions that control ignition and pollutant formation and, moreover, the ability to predict such phenomena via computer modeling. However, fundamental understanding of hydrocarbon and biofuel chemistry becomes more complex in next-generation combustion systems that incorporate new strategies and operating conditions of temperature and pressure that differ from conventional systems. This project specifically focuses on cyclic ethers, which are a class of intermediates formed predominantly at low temperatures as found in modern combustion systems. To contribute to energy efficiency goals for next-generation combustion technologies, this CAREER project tightly integrates research, education, and outreach strategies to produce fundamental knowledge and instructional tools to advance the field of combustion chemistry. This project includes scientific training of Ph.D. students, undergraduate Student Veterans, and first-generation students. The research elements underpin several educational projects, including, among others, combustion science videos produced in collaboration with the Grady School of Journalism, wherein graduate and undergraduate students discuss their research and its broader impact to spur interest in combustion research. The primary research activities of the project involve combustion experiments on cyclic ethers using a high-pressure jet-stirred reactor and the development of new sub-mechanisms using Reaction Mechanism Generator, a leading open-source software for chemical kinetics modeling. The project specifically focuses on cyclic ether radical chemistry, the knowledge gap on the competition of between unimolecular ring-opening and bimolecular reaction with oxygen, and related impact on ignition and emissions predictions. The experiments utilize mass spectrometry and a state-of-the-art electronic absorption spectroscopy technique to measure isomer-resolved species profiles of products from combustion of the six cyclic ethers produced from n-pentane oxidation: 1,2-epoxypentane, 2,3-epoxypentane, 2-ethyloxetane, 2,4-dimethyloxetane, 2-methyltetrahydrofuran, and tetrahydropyran. The scientific impact of this research includes the development of new, fundamental understanding of chemical reactivity relevant to combustion, new cyclic ether sub-mechanisms, as well as improvements to the fidelity of existing chemical kinetics mechanisms, which enable the design and modeling of next-generation combustion systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国能源信息署预测,未来几十年交通运输部门消耗的燃烧能源部分与 2020 年仍惊人相似,其中碳氢化合物和生物燃料约占 97%。与其他技术同时,持续开发用于运输的可持续燃烧系统是美国的高度优先事项。尽管多年来取得了许多进步,包括大幅减少排放和提高燃油经济性,但开发可持续和低碳密集型能源仍然面临重大科学挑战。燃烧系统效率的提高取决于对控制点火和污染物形成的化学反应的理解,以及通过计算机建模预测此类现象的能力。然而,在下一代燃烧系统中,对碳氢化合物和生物燃料化学的基本理解变得更加复杂,该系统采用了与传统系统不同的新策略以及温度和压力操作条件。该项目特别关注环醚,它是现代燃烧系统中主要在低温下形成的一类中间体。为了促进下一代燃烧技术的能源效率目标,该职业项目紧密整合了研究、教育和推广策略,以提供基础知识和教学工具,以推进燃烧化学领域的发展。该项目包括博士的科学培训。学生、本科退伍军人和第一代学生。这些研究内容支撑着多个教育项目,其中包括与格雷迪新闻学院合作制作的燃烧科学视频,其中研究生和本科生讨论他们的研究及其更广泛的影响,以激发对燃烧研究的兴趣。该项目的主要研究活动包括使用高压喷射搅拌反应器进行环醚燃烧实验,以及使用反应机制生成器(一种领先的化学动力学建模开源软件)开发新的子机制。该项目特别关注环醚自由基化学、单分子开环和与氧的双分子反应之间竞争的知识差距,以及对点火和排放预测的相关影响。实验利用质谱法和最先进的电子吸收光谱技术来测量正戊烷氧化产生的六种环醚燃烧产物的异构体解析物种谱:1,2-环氧戊烷、2,3 -环氧戊烷、2-乙基氧杂环丁烷、2,4-二甲基氧杂环丁烷、2-甲基四氢呋喃和四氢吡喃。这项研究的科学影响包括对与燃烧相关的化学反应性、新的环醚子机制的新的、基本的理解的发展,以及对现有化学动力学机制保真度的改进,这使得下一代的设计和建模成为可能。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reaction mechanisms of alkyloxiranes for combustion modeling
  • DOI:
    10.1016/j.combustflame.2023.112753
  • 发表时间:
    2023-04-04
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Dewey, Nicholas S.;Rotavera, Brandon
  • 通讯作者:
    Rotavera, Brandon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brandon Rotavera其他文献

Brandon Rotavera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brandon Rotavera', 18)}}的其他基金

Machine Learning Models for Interpreting Molecular Structure from Vacuum Ultraviolet Spectra
从真空紫外光谱解释分子结构的机器学习模型
  • 批准号:
    2304903
  • 财政年份:
    2023
  • 资助金额:
    $ 50.99万
  • 项目类别:
    Standard Grant
Direct Chemical Kinetics Studies of Elusive Intermediates in Combustion: Ketohydroperoxides
难以捉摸的燃烧中间体的直接化学动力学研究:酮氢过氧化物
  • 批准号:
    1938838
  • 财政年份:
    2020
  • 资助金额:
    $ 50.99万
  • 项目类别:
    Standard Grant

相似国自然基金

变质岩中主要变质矿物化学成分环带性质的基本规律研究及其应用
  • 批准号:
    42330303
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
基于石墨间层质心插入理论的插层化学基本反应机制研究
  • 批准号:
    22379110
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
废弃生物油脂热化学多级演化形成航空燃油的基本规律研究
  • 批准号:
    31770612
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
新型水系混合阳离子二次电池的基本原理及应用研究
  • 批准号:
    51404233
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于分子内共振能量转移的宽谱带吸收有机三重态光敏剂的制备和若干基本光物理问题的研究
  • 批准号:
    21473020
  • 批准年份:
    2014
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

2023 RNA Nanotechnology Gordon Research Conference and Seminar
2023年RNA纳米技术戈登研究会议暨研讨会
  • 批准号:
    10598881
  • 财政年份:
    2023
  • 资助金额:
    $ 50.99万
  • 项目类别:
2022 Optics and Photonics in Medicine and Biology Gordon Research Conference and Seminar
2022年光学与光子学在医学和生物学戈登研究会议暨研讨会
  • 批准号:
    10462890
  • 财政年份:
    2022
  • 资助金额:
    $ 50.99万
  • 项目类别:
Diabetes Institute Summer Interprofessional Research Experience (DISIRE) for Undergraduates
糖尿病研究所本科生暑期跨专业研究体验 (DISIRE)
  • 批准号:
    10331413
  • 财政年份:
    2022
  • 资助金额:
    $ 50.99万
  • 项目类别:
Cannabinoid Function in the CNS: From Molecules to Disease Mechanisms
大麻素在中枢神经系统中的功能:从分子到疾病机制
  • 批准号:
    8906982
  • 财政年份:
    2015
  • 资助金额:
    $ 50.99万
  • 项目类别:
2015 RNA Nanotechnology Gordon Research Conference
2015年RNA纳米技术戈登研究会议
  • 批准号:
    8831228
  • 财政年份:
    2015
  • 资助金额:
    $ 50.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了