Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks

协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击

基本信息

项目摘要

Deep neural network (DNN) is widely deployed for a variety of decision-making tasks such as access control, medical diagnostics, and autonomous driving. Compromise of DNN models can severely disrupt inference behavior, leading to catastrophic outcomes for security and safety-sensitive applications. While a tremendous amount of efforts have been made to secure DNNs against external adversaries (e.g., adversarial examples), internal adversaries that tamper DNN model integrity through exploiting hardware threats (i.e., fault injection attacks) can raise unprecedented concerns. This project aims to offer insights into DNN security issues due to hardware-based fault attacks, and explore ways to promote the robustness and security of future deep learning system against such internal adversaries. This project targets one critical research topic, namely securing deep learning systems against hardware-based model tampering. Recent advances in hardware fault attacks (e.g., rowhammer) can deterministically inject faults to DNN models, causing bit flips in key DNN parameters including model weights. Such threats can be extremely dangerous as they could potentially enable malicious manipulation of prediction outcomes in the inference stage by the adversary. The project seeks to systematically understand the practicality and severity of DNN model bit flip attacks in real systems and investigate software/architecture level protection techniques to secure DNNs against internal tampering. The study focuses on quantized DNNs which exhibit higher robustness against model tampering. This project will incorporate the following research efforts: (1) Investigate the vulnerability of quantized DNNs to deterministic bit flipping of model weights concerning various attack objectives; (2) Explore algorithmic approaches to enhance the intrinsic robustness of quantized DNN models; (3) Design effective and efficient system and architecture level defense mechanisms to comprehensively defeat DNN model bit flip attacks. This project will result in the dissemination of shared data, attack artifacts, algorithms and tools to the broader hardware security and AI security community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)广泛应用于访问控制、医疗诊断和自动驾驶等各种决策任务。 DNN 模型的妥协可能会严重扰乱推理行为,从而导致安全和安全敏感应用程序的灾难性后果。虽然为了保护 DNN 免受外部对手(例如对抗性示例)的攻击付出了巨大的努力,但通过利用硬件威胁(即故障注入攻击)来篡改 DNN 模型完整性的内部对手可能会引起前所未有的担忧。该项目旨在深入了解由于基于硬件的故障攻击而导致的 DNN 安全问题,并探索提高未来深度学习系统针对此类内部对手的鲁棒性和安全性的方法。 该项目针对一个关键研究主题,即保护深度学习系统免受基于硬件的模型篡改。硬件故障攻击(例如 rowhammer)的最新进展可以确定性地将故障注入 DNN 模型,导致包括模型权重在内的关键 DNN 参数发生位翻转。此类威胁可能极其危险,因为它们可能会导致对手在推理阶段恶意操纵预测结果。该项目旨在系统地了解实际系统中 DNN 模型位翻转攻击的实用性和严重性,并研究软件/架构级保护技术以确保 DNN 免受内部篡改。该研究重点关注量化 DNN,它对模型篡改表现出更高的鲁棒性。该项目将包括以下研究工作:(1)研究量化DNN对涉及各种攻击目标的模型权重的确定性位翻转的脆弱性; (2) 探索增强量化DNN模型内在鲁棒性的算法方法; (3)设计有效、高效的系统和架构级防御机制,全面抵御DNN模型比特翻转攻击。该项目将导致共享数据、攻击工件、算法和工具向更广泛的硬件安全和人工智能安全社区传播。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LADDER: Architecting Content and Location-aware Writes for Crossbar Resistive Memories
LADDER:为 Crossbar 电阻式存储器设计内容和位置感知写入
Clairvoyance: Exploiting Far-field EM Emanations of GPU to "See" Your DNN Models through Obstacles at a Distance
千里眼:利用 GPU 的远场电磁发射来透过远处的障碍物“看到”您的 DNN 模型
Seeds of SEED: NMT-Stroke: Diverting Neural Machine Translation through Hardware-based Faults
SEED 的种子:NMT-Stroke:通过基于硬件的故障转移神经机器翻译
LockedDown: Exploiting Contention on Host-GPU PCIe Bus for Fun and Profit
LockedDown:利用主机 GPU PCIe 总线上的争用获取乐趣和利润
Graphics Peeping Unit: Exploiting EM Side-Channel Information of GPUs to Eavesdrop on Your Neighbors
图形偷窥单元:利用 GPU 的 EM 侧通道信息窃听邻居
  • DOI:
    10.1109/sp46214.2022.9833773
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhan, Zihao;Zhang, Zhenkai;Liang, Sisheng;Yao, Fan;Koutsoukos, Xenofon
  • 通讯作者:
    Koutsoukos, Xenofon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fan Yao其他文献

PowSpectre: Powering Up Speculation Attacks with TSX-based Replay
PowSpectre:通过基于 TSX 的重放增强投机攻击
PrODACT: Prefetch-Obfuscator to Defend Against Cache Timing Channels
ProDACT:用于防御缓存时序通道的预取混淆器
Mining TCGA to Reveal Immunotherapy-related Genes for Soft Tissue Sarcoma
挖掘 TCGA 以揭示软组织肉瘤免疫治疗相关基因
  • DOI:
    10.21203/rs.3.rs-1107348/v1
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruixin Li;Fan Yao;Yijin Liu;Xiaodan Wu;Peng Su;Tian
  • 通讯作者:
    Tian
PowerStar: Improving Power Efficiency in Heterogenous Processors for Bursty Workloads with Approximate Computing
PowerStar:通过近似计算提高突发工作负载的异构处理器的电源效率
Study of Link Average Speed Estimation Model Based on Probe Vehicle
基于探测车的链路平均速度估计模型研究

Fan Yao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fan Yao', 18)}}的其他基金

CAREER: Understanding and Ensuring Secure-by-design Microarchitecture in Modern Era of Computing
职业:理解并确保现代计算时代的安全设计微架构
  • 批准号:
    2340777
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Towards Secure-By-Design Integration of Emerging Non-Volatile Memory in Future Systems
CNS 核心:小型:在未来系统中实现新兴非易失性存储器的安全设计集成
  • 批准号:
    2008339
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了