Collaborative Research: Glial scar morphology informed tunable biomimetic platforms toward spinal cord injury repair
合作研究:胶质疤痕形态为脊髓损伤修复的可调仿生平台提供信息
基本信息
- 批准号:2042117
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Spinal cord injury (SCI) results in loss of cells and blood supply, disruption of brain connectivity to various tissues, and formation of a dense scar around the injury site, ultimately resulting in permanent loss of mobility. There are no proven clinical solutions or pharmaceutical interventions to reverse SCI. To develop successful treatment options for SCI, it is important to first understand the physical, chemical, and biological changes occurring over time in the injured tissues. This information would in turn help in developing improved mimics of such injured tissues (combining important structural, mechanical, and inflammatory aspects) to test the response of various cells resident to the spinal cord, as well as to evaluate the efficacy of pharmaceutical drugs in promoting tissue regeneration to ultimately improve the success of downstream clinical applications. Successful implementation of these objectives will lead to the development and validation of physiologically-relevant integrated systems that improve our fundamental understanding of SCI, while also enabling new testing platforms. The broader impact of this work will include the generation of new insights into how nerve cell outgrowth and targeting is inhibited in an inflammatory SCI tissue, and may be overcome for reparative benefit, specifically in the context of SCI. Besides opportunities for research dissemination to the scientific community, this project will lead to training of diverse undergraduate and graduate students through development of research/educational modules and through the auspices of established summer internship/outreach programs at the investigators’ respective institutions.Injury to the central nervous system (CNS) has profound, long-term physiological consequences due to the tissue’s low innate regenerative ability and formation of a glial scar around the injury site. This scar has large soft regions, is inhibitive to axonal/neurite outgrowth, confers an anti-regenerative environment, and is marked by gliosis and production of inhibitory chondroitin sulfate proteoglycans. The underlying mechanisms for such altered characteristics at the injury site are unclear. The goals of this study are to (1) elucidate and correlate spinal cord tissue-scale mechanical properties, architecture, and mechanochemical signaling at key phases following CNS injury, and (2) identify the mechanochemical response of CNS cells to scar-like physical properties measurable via defined signaling pathways, altered membrane tension, and tension-regulated behaviors. This multi-disciplinary, comprehensive strategy establishes hitherto undefined multi-scale relationships between glial scar structure, micromechanical properties, ECM composition, and CNS cell mechanochemical responses. The newly identified glial scar characteristics will be utilized to develop tunable biomimetic hydrogels for the isolation of CNS cell function, mechano-chemical profiles, membrane tension, and regulated behaviors, towards mimicking the acute injury phase in a humanized in vitro platform. The broader research impacts of this project include generation of new mechanistic insights into how cell functions are dysregulated in an inflammatory milieu, while offering new targets for regeneration. By emphasizing mechanobiological knowledge-driven formulation of glial scar-biomimetic scaffolds, this project represents a paradigm shift in CNS repair and regeneration strategies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
脊髓损伤(SCI)导致细胞损失和血液供应损伤部位,最终导致迁移率永久性损失。在受伤的组织中,此信息将有助于改善这种受伤的组织(结合重要结构和炎症方面)的模仿,以测试属于脊髓的各种细胞的反应这些目标的成功实施将导致与您的SCI基本地位相关的综合系统,同时还可以实现新的测试平台。在炎症的SCI组织中抑制神经细胞的ouu tgrowth和靶向,并且在SCI的情况下可能是过度的修复益处。研究人员对中心神经系统的伤害(CNS)具有深刻的长期生理惯例,这是由于组织的先天再生和形成的疤痕。抑制轴突/神经突的生长,赋予了抗再生环境,并以抑制性软骨素硫酸盐蛋白聚糖的形式出现了胶质性和生产。 1)阐明并与CNS损伤后的关键相位的脊髓组织尺度机械性能,d机械信号传导,以及(2)确定CNS细胞对可通过定义的信号通路测量的疤痕样物理特性的机械化学响应张力和张力的行为。细胞机械化学曲线,膜张力和常规行为,以模仿人性化的体外RM中逐步分阶段,该机制的更广泛的研究影响了细胞功能在炎症中如何疾病,同时为新目标提供了新的目标。再生。审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nic Leipzig其他文献
Nic Leipzig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nic Leipzig', 18)}}的其他基金
Conference: 2013 Cellular and Molecular Bioengineering (CMBE) Conference; Kohala Coast, Hawaii; 1-5 January 2013
会议:2013年细胞与分子生物工程(CMBE)会议;
- 批准号:
1259389 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
徐氏抑肝扶脾方通过ATP/P2X2-TRPV1信号通路调控肠胶质细胞自噬减轻肝郁脾虚型IBS-D神经炎症的机制研究
- 批准号:82305135
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
O-GlcNAc糖基化修饰稳定YTHDC1蛋白促进胶质母细胞瘤发展的机制研究
- 批准号:82303835
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嗅球小胶质细胞P2X7受体在变应性鼻炎发生帕金森病样改变中的作用与机制研究
- 批准号:82371119
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
细叶远志皂苷靶向ABCA1-GULP1轴增强小胶质细胞吞噬功能促进MS髓鞘再生的机制研究
- 批准号:82304752
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于小胶质细胞极化分子网络的藏药鬼箭锦鸡儿抗缺血性脑中风功效组分和整合机制研究
- 批准号:82374147
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Targeting microglial cell iron-handling in Alzheimer’s Disease
靶向阿尔茨海默病中的小胶质细胞铁处理
- 批准号:
10603992 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Asian Americans & Racism: Individual and Structural Experiences (ARISE)
亚裔美国人
- 批准号:
10900989 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research: Glial scar morphology informed tunable biomimetic platforms toward spinal cord injury repair
合作研究:胶质疤痕形态为脊髓损伤修复的可调仿生平台提供信息
- 批准号:
2042116 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Glial regulation of extracellular potassium as an underlying developmental mechanism for the male-female difference in pacemaker neuron firing frequency
合作研究:细胞外钾的神经胶质调节作为起搏器神经元放电频率男女差异的潜在发育机制
- 批准号:
1946910 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Reciprocal communication between human neural stem cells and human endothelial cells
人类神经干细胞和人类内皮细胞之间的相互通讯
- 批准号:
10066943 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别: