CAREER: Leveraging Heterogeneous Manycore Systems for Scalable Modeling, Simulation and Verification of Nanoscale Integrated Circuits
职业:利用异构众核系统进行纳米级集成电路的可扩展建模、仿真和验证
基本信息
- 批准号:2041519
- 负责人:
- 金额:$ 14.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this CAREER research project is to best unleash the power of emerging heterogeneous manycore CPU-GPU computing platforms. This will require revolutionizing the next-generation Electronic Design Automation (EDA) tools to deal with unprecedented complexity of circuits involving billions of components, making possible their modeling, analysis and verification tasks which would be prohibitively expensive and even intractable with methods in use today. The experience acquired in this research is also likely to contribute to advances in the use of computing in other areas of science and engineering, thus impacting areas such as complex system modeling and simulation, computational fluid dynamics, social computing, and systems biology. The PI will promote undergraduate and underrepresented student research, as well as K-12 education outreach, to motivate students in pursuing advanced engineering education or a career in STEM areas. Additionally, the PI will integrate the research outcomes into undergraduate and graduate curriculum development, and leverage interdisciplinary, industrial and international collaborations to effectively facilitate the proposed research work and broadly disseminate the results. Future nanoscale Integrated Circuit (IC) subsystems, such as clock distributions, power delivery networks, embedded memory arrays, as well as analog and mixed-signal systems, may reach an unprecedented complexity involving billions of circuit components, making their modeling, analysis and verification tasks prohibitively expensive and intractable with existing EDA tools. On the other hand, emerging heterogeneous manycore computing systems, such as the manycore CPU-GPU computing platforms that integrate a few large yet power-consuming general purpose processors with massive number of much slimmer but more energy-efficient graphics processors, can theoretically delivery teraflops of computing power. The proposal aims to accelerate a paradigm shift in EDA research to more energy-efficient heterogeneous computing regimes. Towards this end, the PI will develop systematic hardware/software approaches to achieve scalable integrated circuit modeling, simulation and verifications by inventing heterogeneous CAD algorithms and data structures, as well as exploiting hardware-specific and domain-specific runtime performance modeling and optimization approaches.
该职业研究项目的目标是最好地释放新兴异构众核 CPU-GPU 计算平台的力量。这将需要彻底改变下一代电子设计自动化(EDA)工具,以处理涉及数十亿个元件的前所未有的复杂电路,从而使它们的建模、分析和验证任务成为可能,而这些任务对于当今使用的方法来说是非常昂贵的,甚至是棘手的。这项研究中获得的经验也可能有助于其他科学和工程领域的计算应用的进步,从而影响复杂系统建模和模拟、计算流体动力学、社会计算和系统生物学等领域。 PI 将促进本科生和代表性不足的学生研究以及 K-12 教育推广,以激励学生追求高级工程教育或 STEM 领域的职业。此外,PI还将把研究成果整合到本科生和研究生课程开发中,并利用跨学科、行业和国际合作来有效促进拟议的研究工作并广泛传播研究成果。未来的纳米级集成电路(IC)子系统,例如时钟分配、电力传输网络、嵌入式存储器阵列以及模拟和混合信号系统,可能会达到前所未有的复杂性,涉及数十亿个电路元件,这使得它们的建模、分析和验证变得更加困难。使用现有的 EDA 工具来完成极其昂贵且棘手的任务。另一方面,新兴的异构众核计算系统,例如众核CPU-GPU计算平台,将一些大型但耗电的通用处理器与大量更轻薄但更节能的图形处理器集成在一起,理论上可以提供万亿次浮点运算。的计算能力。该提案旨在加速 EDA 研究向更节能的异构计算体系的范式转变。为此,PI 将开发系统的硬件/软件方法,通过发明异构 CAD 算法和数据结构,以及利用特定于硬件和特定领域的运行时性能建模和优化方法,实现可扩展的集成电路建模、仿真和验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhuo Feng其他文献
Measuring residents' anxiety under urban redevelopment in China: An investigation of demographic variables
测量中国城市重建中居民的焦虑:人口变量调查
- DOI:
10.1007/s42524-020-0131-3 - 发表时间:
2021 - 期刊:
- 影响因子:7.4
- 作者:
Jinbo Song;Chen Qian;Zhuo Feng;Liang Ma - 通讯作者:
Liang Ma
Scalable Multilevel Vectorless Power Grid Voltage Integrity Verification
可扩展的多级无矢量电网电压完整性验证
- DOI:
10.1109/tvlsi.2012.2212033 - 发表时间:
2013 - 期刊:
- 影响因子:2.8
- 作者:
Zhuo Feng - 通讯作者:
Zhuo Feng
A Behavioral Study of Chinese Online Human Flesh Communities: Modeling and Analysis with Social Networks
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Zhuo Feng - 通讯作者:
Zhuo Feng
Density functional calculations on 13-atom Pd12M (M = Sc?Ni) bimetallic clusters
13 原子 Pd12M (M = Sc?Ni) 双金属团簇的密度泛函计算
- DOI:
10.1088/1674-1056/21/11/117101 - 发表时间:
2012 - 期刊:
- 影响因子:1.7
- 作者:
Tang Chun;Chen Sheng;Zhu Weihua;T. Cheng;Zhang Aimei;Gong Jiangfeng;Z. Hua;Liu Ming;Zhuo Feng - 通讯作者:
Zhuo Feng
A conifer-dominated Early Triassic flora from Southwest China
中国西南早三叠世以针叶树为主的植物群
- DOI:
10.1016/j.scib.2018.09.011 - 发表时间:
2018 - 期刊:
- 影响因子:18.9
- 作者:
Zhuo Feng;Hai-Bo Wei;Yun Guo;Benjamin Bomfleur - 通讯作者:
Benjamin Bomfleur
Zhuo Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhuo Feng', 18)}}的其他基金
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
- 批准号:
2212370 - 财政年份:2022
- 资助金额:
$ 14.02万 - 项目类别:
Continuing Grant
SHF: Small: Learning Circuit Networks from Measurements
SHF:小型:从测量中学习电路网络
- 批准号:
2205572 - 财政年份:2022
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
SHF: Small: Spectral Reduction of Large Graphs and Circuit Networks
SHF:小:大型图和电路网络的频谱缩减
- 批准号:
2021309 - 财政年份:2019
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
SHF: Small: Scalable Spectral Sparsification of Graph Laplacians and Integrated Circuits
SHF:小:图拉普拉斯和集成电路的可扩展谱稀疏化
- 批准号:
2011412 - 财政年份:2019
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
SHF: Small: Spectral Reduction of Large Graphs and Circuit Networks
SHF:小:大型图和电路网络的频谱缩减
- 批准号:
1909105 - 财政年份:2019
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
SHF: Small: Scalable Spectral Sparsification of Graph Laplacians and Integrated Circuits
SHF:小:图拉普拉斯和集成电路的可扩展谱稀疏化
- 批准号:
1618364 - 财政年份:2016
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
CAREER: Leveraging Heterogeneous Manycore Systems for Scalable Modeling, Simulation and Verification of Nanoscale Integrated Circuits
职业:利用异构众核系统进行纳米级集成电路的可扩展建模、仿真和验证
- 批准号:
1350206 - 财政年份:2014
- 资助金额:
$ 14.02万 - 项目类别:
Continuing Grant
SHF:Small:Graph Sparsification Approach to Scalable Parallel SPICE-Accurate Simulation of Post-layout Integrated Circuits
SHF:Small:可扩展并行 SPICE 的图稀疏方法 - 布局后集成电路的精确仿真
- 批准号:
1318694 - 财政年份:2013
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
- 批准号:
2231254 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
- 批准号:
2231261 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
MCA: Leveraging Artificial Intelligence to Improve Understanding of Biogenic Volatile Organic Compound Emissions and Chemistry over Heterogeneous Forest Landscapes
MCA:利用人工智能提高对异质森林景观中生物挥发性有机化合物排放和化学的了解
- 批准号:
2322325 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: JUNO3: Leveraging Heterogeneous Programmable Data Planes for Security and Privacy of Cellular Networks, 5G & Beyond
合作研究:NetS:JUNO3:利用异构可编程数据平面实现蜂窝网络、5G 的安全和隐私
- 批准号:
2210380 - 财政年份:2022
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: JUNO3: Leveraging Heterogeneous Programmable Data Planes for Security and Privacy of Cellular Networks, 5G & Beyond
合作研究:NetS:JUNO3:利用异构可编程数据平面实现蜂窝网络、5G 的安全和隐私
- 批准号:
2210379 - 财政年份:2022
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant