CAREER: Glass formation in strongly interacting polymers - predictive understanding from high-throughput simulation and theory
职业:强相互作用聚合物中的玻璃形成 - 通过高通量模拟和理论进行预测性理解
基本信息
- 批准号:1849594
- 负责人:
- 金额:$ 36.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-07 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis CAREER award supports theoretical and computational research, and education on soft materials. Transformational technologies ranging from vaccines that remain viable at room temperature to flexible and stable solar cells and electronics await the development of new polymeric materials, soft materials made from long molecular chains with repeating molecular units, that push the limits of material performance. Many of the most promising materials for these new technologies derive their potential from two shared features: they solidify without forming a crystal, through a process known as the glass transition; and their molecules possess strong interactions. At the same time that these features are key to the potential of these materials, they also present a challenge to rational materials design. A fundamental understanding of the physics of the glass transition, the central determinant of the properties of these materials, is still lacking. This problem is especially acute in strongly interacting polymers, because strong interactions are resistant to standard theoretical approaches and are difficult to efficiently capture in computer simulations. As a result, it has not been possible to study molecular behavior at sufficiently long time scales and in sufficiently diverse chemistries to both unravel the fundamental physics of these materials and guide their design.This project is aimed to overcome these challenges. The PI will combine new theoretical approaches and an improved strategy for simulating glass-forming materials to establish fundamental insights and design guidelines for strongly interacting glass-forming polymers. This strategy will enable access to very long time scales and tens of thousands of chemistries to identify common aspects of the molecular physics of these materials and translate them into predictive theories for their properties. This theoretical understanding, in turn, will guide selection of molecular structures yielding unique, targeted material properties. Success of this project will contribute to accelerating the development of materials with the potential to improve human health, enable a cleaner domestic energy economy, enhance the lightness and durability of auto and aircraft components, and broaden the versatility of electronics and solar cells.This research will be integrated with educational outreach activities that will advance a Science, Technology, Engineering, and Mathematics (STEM) pipeline focused on guiding outstanding students - especially those from socioeconomically underprivileged backgrounds - into STEM careers. Specific activities will include expanding a PI-initiated effort offering paid summer-to-fall research internships to high school students, engaging of undergraduates in laboratory research, and coordinating master's degree programs to cement the transition of undergraduate students into the STEM community. TECHNICAL SUMMARYThis CAREER award supports theoretical and computational research, and education on polymer glasses. Strongly interacting polymers can exhibit extreme properties with the potential to enable societally transformational technologies, such as room-temperature preservation of vaccines in hydrogen-bonding polymer glasses and flexible solar cells and electronics stabilized by extraordinarily impermeable glassy polymer films. The dynamic, mechanical, and transport properties that determine the performance of these materials are largely controlled by the details of their glass transition, both in the glassy state where the structure frozen in at the glass transition temperature "controls" these properties and at higher temperatures where the glass formation process can dominate behavior to hundreds of Kelvin above the glass transition temperature. Rational design of these materials therefore demands a predictive understanding of glass formation in strongly interacting polymers. However, an understanding of the glass transition sufficient to guide materials design remains a grand challenge of materials science. While molecular dynamics simulations have provided a valuable tool in the study of this phenomenon, they have been unable to yield a predictive understanding of its physics because their insufficient speed prohibits simulation in the deeply supercooled regime near the glass transition and prevents simulations from spanning the large sets of systems necessary to establish comprehensive structure/property relations. This problem is especially acute in strongly interacting polymers, in which simulations are substantially slower and standard theoretical approaches based only on van der Waals interactions break down. This research project is aimed to overcome these challenges and to accomplish two strategic goals:1) Identify universal mechanistic interrelations between static and dynamic properties associated with glass formation in strongly interacting polymers, including alpha relaxation time, glass transition temperature, fragility of glass formation, glassy modulus, configurational entropy, and free volume. 2) Establish mechanism-based structure-property relations predicting the dependence of these properties on the molecular structure of strongly interacting polymers.These goals will be achieved by employing a novel efficient protocol for molecular dynamics simulation of the glass transition, developed in the PI's group, to perform simulations that access the deeply supercooled regime and span large matrices of molecular properties in strongly interacting polymers. These simulation data will be employed to establish structure/property relations covering a large range of molecular properties based on molecular-level insights. Data from these simulations will also be combined with theoretical models of glass formation to establish new mechanistic understanding and theoretical descriptions of glass formation in strongly interacting polymers. Ultimately, by combining theory with high-throughput simulations, this project will establish structure/property relations to enable theory-based design of strongly-interacting glass-forming polymers. This research will be integrated with educational outreach activities that will advance a STEM pipeline focused on guiding outstanding students - especially those from socioeconomically underprivileged backgrounds - into STEM careers. Specific activities will include expanding a PI-initiated effort offering paid summer-to-fall research internships to high school students, engaging of undergraduates in laboratory research, and coordinating master's degree programs to cement the transition of undergraduate students into the STEM community.
非技术摘要该职业奖支持理论和计算研究以及软材料教育。从在室温下保持活力的疫苗到灵活稳定的太阳能电池和电子产品,各种变革性技术正在等待新型聚合物材料的开发,这些材料是由具有重复分子单元的长分子链制成的软材料,这些材料突破了材料性能的极限。这些新技术中许多最有前途的材料的潜力都源于两个共同的特征:它们通过称为玻璃化转变的过程固化而不形成晶体;并且它们的分子具有很强的相互作用。这些特性是这些材料潜力的关键,同时它们也对合理的材料设计提出了挑战。对于玻璃化转变(这些材料性能的核心决定因素)物理学的基本了解仍然缺乏。这个问题在强相互作用的聚合物中尤其严重,因为强相互作用阻碍了标准理论方法,并且难以在计算机模拟中有效捕获。因此,不可能在足够长的时间尺度和足够多样化的化学物质中研究分子行为,以阐明这些材料的基本物理原理并指导其设计。该项目旨在克服这些挑战。该 PI 将结合新的理论方法和改进的玻璃形成材料模拟策略,为强相互作用的玻璃形成聚合物建立基本见解和设计指南。该策略将能够访问很长的时间尺度和数以万计的化学物质,以确定这些材料分子物理的共同方面,并将其转化为其特性的预测理论。反过来,这种理论理解将指导分子结构的选择,从而产生独特的、有针对性的材料特性。该项目的成功将有助于加速开发具有改善人类健康潜力的材料,实现更清洁的国内能源经济,提高汽车和飞机部件的轻便性和耐用性,并拓宽电子和太阳能电池的多功能性。这项研究将与教育推广活动相结合,推动科学、技术、工程和数学 (STEM) 管道的发展,重点是引导优秀学生(尤其是来自社会经济贫困背景的学生)进入 STEM 职业。具体活动将包括扩大 PI 发起的努力,为高中生提供带薪夏季至秋季研究实习、让本科生参与实验室研究,以及协调硕士学位课程以巩固本科生向 STEM 社区的过渡。技术摘要该职业奖支持聚合物玻璃的理论和计算研究以及教育。强相互作用的聚合物可以表现出极端的特性,有可能实现社会变革技术,例如在氢键聚合物玻璃中室温保存疫苗,以及通过极其不渗透的玻璃状聚合物薄膜稳定的柔性太阳能电池和电子产品。决定这些材料性能的动态、机械和传输特性在很大程度上由其玻璃化转变的细节控制,无论是在玻璃态(其中在玻璃化转变温度下冻结的结构“控制”这些特性)还是在更高的温度下其中玻璃形成过程可以主导玻璃化转变温度以上数百开尔文的行为。因此,这些材料的合理设计需要对强相互作用聚合物中的玻璃形成有预测性的了解。然而,对玻璃化转变的理解足以指导材料设计仍然是材料科学的巨大挑战。虽然分子动力学模拟为研究这种现象提供了一个有价值的工具,但它们无法对其物理现象产生预测性的理解,因为它们的速度不足阻碍了在玻璃化转变附近的深度过冷状态下的模拟,并且阻止了模拟跨越大范围。建立全面的结构/产权关系所必需的一套系统。这个问题在强相互作用聚合物中尤其严重,其中模拟速度要慢得多,并且仅基于范德华相互作用的标准理论方法会失效。 该研究项目旨在克服这些挑战并实现两个战略目标:1)确定强相互作用聚合物中与玻璃形成相关的静态和动态特性之间的普遍机械相互关系,包括α弛豫时间、玻璃化转变温度、玻璃形成的脆性、玻璃模量、构型熵和自由体积。 2) 建立基于机制的结构-性能关系,预测这些性能对强相互作用聚合物分子结构的依赖性。这些目标将通过采用 PI 小组开发的新型有效的玻璃化转变分子动力学模拟协议来实现,进行模拟,以进入深度过冷状态并跨越强相互作用聚合物中的分子特性的大矩阵。这些模拟数据将用于基于分子水平的见解建立涵盖大范围分子性质的结构/性质关系。 这些模拟的数据还将与玻璃形成的理论模型相结合,以建立强相互作用聚合物中玻璃形成的新机制理解和理论描述。最终,通过将理论与高通量模拟相结合,该项目将建立结构/性能关系,以实现基于理论的强相互作用玻璃形成聚合物的设计。这项研究将与教育推广活动相结合,推动 STEM 管道的发展,重点是引导优秀学生(尤其是来自社会经济贫困背景的学生)进入 STEM 职业。具体活动将包括扩大 PI 发起的努力,为高中生提供带薪夏季至秋季研究实习、让本科生参与实验室研究,以及协调硕士学位课程以巩固本科生向 STEM 社区的过渡。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Signature of collective elastic glass physics in surface-induced long-range tails in dynamical gradients
动态梯度中表面诱导长程尾部的集体弹性玻璃物理特征
- DOI:10.1038/s41567-023-01995-8
- 发表时间:2023-03-23
- 期刊:
- 影响因子:19.6
- 作者:Asieh Ghanekarade;A. D. Phan;K. Schweizer;D. Simmons
- 通讯作者:D. Simmons
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Simmons其他文献
Metrical theorems on systems of small Affine forms
小仿射形式系统的度量定理
- DOI:
- 发表时间:
2014-06-16 - 期刊:
- 影响因子:0
- 作者:
Mumtaz Hussain;S. Kristensen;David Simmons - 通讯作者:
David Simmons
Uniformly de Bruijn Sequences and Symbolic Diophantine Approximation on Fractals
分形上的一致 de Bruijn 序列和符号丢番图近似
- DOI:
10.1007/s00026-018-0384-2 - 发表时间:
2018-04-27 - 期刊:
- 影响因子:0.5
- 作者:
Lior Fishman;Keith Merrill;David Simmons - 通讯作者:
David Simmons
Some manifolds of Khinchin type for convergence
一些用于收敛的 Khinchin 型流形
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
David Simmons - 通讯作者:
David Simmons
Chronic ill health in a regional Victoria setting: A 13-year comparison.
维多利亚地区的慢性健康状况不佳:13 年比较。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
K. Glenister;L. Bourke;D. Terry;David Simmons - 通讯作者:
David Simmons
Samoan migrants' perspectives on diabetes: A qualitative study.
萨摩亚移民对糖尿病的看法:一项定性研究。
- DOI:
10.1002/hpja.240 - 发表时间:
2019-04-21 - 期刊:
- 影响因子:0
- 作者:
Yasin Shahab;Olataga Alofivae;J. Reath;F. MacMillan;David Simmons;K. McBride;Penelope A Abbott - 通讯作者:
Penelope A Abbott
David Simmons的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Simmons', 18)}}的其他基金
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312324 - 财政年份:2023
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
Collaborative Research: Measurement, Simulation, and Theory of Molecular Connectivity Effects on Nanoscale Interfacial Rheology of Glass-Forming Fluids
合作研究:玻璃形成流体纳米级界面流变学的分子连接效应的测量、模拟和理论
- 批准号:
2208238 - 财政年份:2022
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
Stress Testing Theories of the Glass and Jamming Transitions Using Hyperellipsoids
使用超椭球体的玻璃和干扰转变的应力测试理论
- 批准号:
2026271 - 财政年份:2021
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
Collaborative Research: Mechanistic understanding and control of soft interfacial nanorheology from molecular simulations and nanoresolved experiments
合作研究:从分子模拟和纳米分辨率实验对软界面纳米流变学的机理理解和控制
- 批准号:
1854308 - 财政年份:2018
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
Collaborative Research: Mechanistic understanding and control of soft interfacial nanorheology from molecular simulations and nanoresolved experiments
合作研究:从分子模拟和纳米分辨率实验对软界面纳米流变学的机理理解和控制
- 批准号:
1705738 - 财政年份:2017
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
CAREER: Glass formation in strongly interacting polymers - predictive understanding from high-throughput simulation and theory
职业:强相互作用聚合物中的玻璃形成 - 通过高通量模拟和理论进行预测性理解
- 批准号:
1554920 - 财政年份:2016
- 资助金额:
$ 36.23万 - 项目类别:
Continuing Grant
Computationally-Driven Rational Control of Glass Formation in Block Copolymers
嵌段共聚物中玻璃形成的计算驱动合理控制
- 批准号:
1310433 - 财政年份:2013
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
NSF Minority Postdoctoral Research Fellowship: Sub-Culture of Insecurity: Human Rights and the Health Status of Haitian Workers in the Dominican Republic
NSF 少数民族博士后研究奖学金:不安全亚文化:多米尼加共和国海地工人的人权和健康状况
- 批准号:
0109234 - 财政年份:2001
- 资助金额:
$ 36.23万 - 项目类别:
Fellowship Award
相似国自然基金
应力发光微/纳晶体-玻璃复合光纤的形成及其传感性能研究
- 批准号:62305114
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非晶合金铸造孔隙缺陷的形成机制及其与玻璃转变的关系
- 批准号:52371152
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
Cu-Zr-Al-X合金液态-液态相变与玻璃形成能力的关系研究
- 批准号:52301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属玻璃中玻璃形成能力和势能图景的机器学习研究
- 批准号:52301214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
黏附界面失稳引发精密模压玻璃表面空化缺陷的形成机制与抑制方法
- 批准号:52375179
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
NanoSMS: single molecule secretome analysis for non-destructive cellular fingerprinting
NanoSMS:用于非破坏性细胞指纹分析的单分子分泌组分析
- 批准号:
10713935 - 财政年份:2023
- 资助金额:
$ 36.23万 - 项目类别:
Cryopreservation and nanowarming enables whole liver banking for transplantation, cell therapy and biomedical research
冷冻保存和纳米加温使整个肝脏库能够用于移植、细胞治疗和生物医学研究
- 批准号:
10584878 - 财政年份:2023
- 资助金额:
$ 36.23万 - 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
10738365 - 财政年份:2023
- 资助金额:
$ 36.23万 - 项目类别:
Multifunctional Colloidal Gel for Dentin Formation
用于牙本质形成的多功能胶体凝胶
- 批准号:
10452975 - 财政年份:2022
- 资助金额:
$ 36.23万 - 项目类别:
Multifunctional Colloidal Gel for Dentin Formation
用于牙本质形成的多功能胶体凝胶
- 批准号:
10620203 - 财政年份:2022
- 资助金额:
$ 36.23万 - 项目类别: