FAI: Foundations of Fair AI in Medicine: Ensuring the Fair Use of Patient Attributes

FAI:医学中公平人工智能的基础:确保患者属性的公平使用

基本信息

  • 批准号:
    2040880
  • 负责人:
  • 金额:
    $ 62.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Machine learning models support decisions that affect millions of patients in the U.S. healthcare system in diagnosing illnesses, facilitating triage in emergency rooms, and informing supervision at intensive care units. In such applications, models will often include group attributes such as age, weight, and employment status to capture differences between patient subgroups. Standard techniques to build models with group attributes typically improve aggregate performance across the entire patient population. As a result, however, such models may lead to worse performance for specific groups. In such cases, the model may assign these groups preventable inaccurate predictions that undermine medical care and health outcomes. This project aims to prevent this harm by developing tools to ensure the fair use of group attributes in predictive models. The goal is to ensure that a model uses group attributes in a way that yields a tailored performance benefit for every group. Currently deployed machine learning models in medicine may exhibit fair use violations that undermine health outcomes. This project mitigates fair use violations at key stages in the deployment of machine learning in medicine: verification, model development, and communication. First, it develops tools to check if a model ensures fair use. These tools include theoretical guarantees that characterize when common approaches to model development produce fair use violations, and statistical tests to verify if a model violates fair use before and during deployment. Second, it develops algorithms for learning models with fair use guarantees. Algorithms will be tailored for salient use cases in medicine, paired with open-source software, and applied to build decision support tools for real-world medical applications. Third, it creates tools to inform key stakeholders (regulators, physicians, and patients) about a model's fair use guarantees. The project draws on machine learning, information theory, optimization, human-centered design, as well as expertise in deploying models in clinical settings. The resulting toolkit for ensuring fair use of group attributes in medicine will be embedded in real-world systems through collaborations with medical researchers and industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习模型支持决定影响美国医疗保健系统中数百万患者的决策,以诊断疾病,促进急诊室中的分类以及在重症监护病房的监督信息。在此类应用中,模型通常将包括年龄,体重和就业状况等组属性,以捕获患者亚组之间的差异。建立具有组属性的模型的标准技术通常会改善整个患者人群的总绩效。因此,这样的模型可能会导致特定组的性能较差。在这种情况下,该模型可能会分配这些群体可预防的不准确预测,以破坏医疗和健康结果。该项目旨在通过开发工具来确保在预测模型中合理使用组属性,以防止这种危害。目的是确保模型以对每个组产生量身定制的性能益处的方式使用组属性。目前,医学中部署的机器学习模型可能会表现出破坏健康结果的合理使用违规行为。该项目在医学中的机器学习部署:验证,模型开发和沟通时会减轻关键阶段的公平使用违规行为。首先,它开发了检查模型是否确保合理使用的工具。这些工具包括理论保证,表征何时共同建模开发的方法会产生合理的用法违规行为,以及统计测试以验证模型是否违反了部署前后的公平用途。其次,它开发了具有合理使用保证的学习模型的算法。算法将针对医学中的显着用例量身定制,并与开源软件配对,并应用于为现实世界中医疗应用构建决策支持工具。第三,它创建了工具,以告知主要利益相关者(监管机构,医师和患者)有关模型的合理使用保证。该项目借鉴了机器学习,信息理论,优化,以人为中心的设计以及在临床环境中部署模型方面的专业知识。通过与医学研究人员和行业的合作,将嵌入医学中的小组属性的最终工具包将嵌入现实世界系统中。该奖项反映了NSF的法定任务,并被认为值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来进行评估。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rashomon Capacity: A Metric for Predictive Multiplicity in Classification
  • DOI:
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hsiang Hsu;F. Calmon
  • 通讯作者:
    Hsiang Hsu;F. Calmon
Fairness without Imputation: A Decision Tree Approach for Fair Prediction with Missing Values
  • DOI:
    10.1609/aaai.v36i9.21189
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haewon Jeong;Hao Wang;F. Calmon
  • 通讯作者:
    Haewon Jeong;Hao Wang;F. Calmon
Generalization Bounds for Noisy Iterative Algorithms Using Properties of Additive Noise Channels
  • DOI:
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Wang;Rui Gao;F. Calmon
  • 通讯作者:
    Hao Wang;Rui Gao;F. Calmon
Analyzing the Generalization Capability of SGLD Using Properties of Gaussian Channels
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Wang;Yizhe Huang;Rui Gao;F. Calmon
  • 通讯作者:
    Hao Wang;Yizhe Huang;Rui Gao;F. Calmon
On the Epistemic Limits of Personalized Prediction
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Monteiro;Carol Long;Berk Ustun;F. Calmon
  • 通讯作者:
    L. Monteiro;Carol Long;Berk Ustun;F. Calmon
共 7 条
  • 1
  • 2
前往

Flavio Calmon的其他基金

Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-tolerance and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
  • 批准号:
    2231707
    2231707
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
    $ 62.5万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
  • 批准号:
    2312667
    2312667
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
    $ 62.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CAREER: Information-Theoretic Foundations of Fairness in Machine Learning
职业:机器学习公平性的信息理论基础
  • 批准号:
    1845852
    1845852
  • 财政年份:
    2019
  • 资助金额:
    $ 62.5万
    $ 62.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
EAGER: AI-DCL: Collaborative Research: Understanding and Overcoming Biases in STEM Education using Machine Learning
EAGER:AI-DCL:协作研究:利用机器学习理解和克服 STEM 教育中的偏见
  • 批准号:
    1926925
    1926925
  • 财政年份:
    2019
  • 资助金额:
    $ 62.5万
    $ 62.5万
  • 项目类别:
    Standard Grant
    Standard Grant
CIF: Medium: Collaborative Research: Information-theoretic Guarantees on Privacy in the Age of Learning
CIF:媒介:协作研究:学习时代隐私的信息理论保证
  • 批准号:
    1900750
    1900750
  • 财政年份:
    2019
  • 资助金额:
    $ 62.5万
    $ 62.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant

相似国自然基金

赤/磁铁矿与含铁硅酸盐矿物浮选分离强化基础研究
  • 批准号:
    52374262
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
复相干矢量光场经叠加型介质散射及信息提取基础研究
  • 批准号:
    12364042
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
SERT-nNOS蛋白相互作用的结构基础及其小分子互作抑制剂的设计、合成及快速抗抑郁活性研究
  • 批准号:
    82373728
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于微量铌和稀土协同处理制备高性能超级双相不锈钢的基础研究
  • 批准号:
    52374334
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大型交通基础设施建设行为与生态环境非对称耦合机理研究
  • 批准号:
    72371043
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

WASHINGTON UNIVERSITY HUMAN TUMOR ATLAS RESEARCH CENTER
华盛顿大学人类肿瘤阿特拉斯研究中心
  • 批准号:
    10819927
    10819927
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
    $ 62.5万
  • 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
  • 批准号:
    10735564
    10735564
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
    $ 62.5万
  • 项目类别:
Data Integration Core
数据集成核心
  • 批准号:
    10555808
    10555808
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
    $ 62.5万
  • 项目类别:
Reverse Metabolomics for the Discovery of Disease Associated Microbial Molecules
用于发现疾病相关微生物分子的反向代谢组学
  • 批准号:
    10651361
    10651361
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
    $ 62.5万
  • 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
    $ 62.5万
  • 项目类别: