EAGER: Collaborative Research: Dynamics of Nanoparticles in Light-Excited Supercavitation
EAGER:合作研究:光激发超空化中纳米粒子的动力学
基本信息
- 批准号:2040565
- 负责人:
- 金额:$ 16.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanoparticles that can be propelled through liquids at high speed (called "nanoswimmers") can play important roles in applications such as targeted-drug delivery, in-situ diagnostics and nanofabrication. For such applications, controlling the direction of high-speed nanoswimmers is critical. However, high-speed nanoswimmers are mostly propelled by forces with random directions, and guided nanoswimmers are currently limited to slow speeds. Designing fully controllable yet fast-moving nanoswimmers thus has significant technological potential. Recent experiments have observed that extremely fast ( 100,000 micron/s) gold nanoparticle swimmers can be directed by light as an external energy source. However, the underlying mechanism is yet to be fully understood. This EAGER project will take the first step toward understanding this phenomenon by studying the force and energy balance of a nanoparticle driven by light. A combination of experiments and numerical simulations of the motion of the nanoswimmers will provide a basic understanding the dynamics of nanoswimmers and resolve questions about the underlying mechanisms of their motion. This, in turn, will provide new information that can lead to a wide range of advanced nanoengineering applications, such as selectively printing nanostructures at a surface for sensing applications or delivering drug-carrying nanoswimmers to biological cells under the skin using skin-penetrable near infrared light sources.The observed ultra-fast nanoswimmer motion has never been reported and could not be explained by Stokes law. This EAGER project will investigate a hypothesis that when the nanoparticle is excited by the light at the surface plasmon resonance (SPR) peak, a nanoscale bubble forms surrounding the particle (i.e., super-cavitation). This provides a near frictionless environment that allows it move at high speed, provided the bubble can remain intact. The objective of the project is to test this hypothesis by analyzing the forces (optical force and fluidic force) the nanoparticle experiences when moving inside the supercavitation bubble using multiscale modeling and experimental techniques. This project consists of two tasks. First, multi-scale modeling will be conducted to understand the nanoparticle dynamics in supercavitation. Second, experiments will be conducted to observe the nanoswimmer dynamics and validate the computation results. This project will unravel fundamental physics involving coupled effects of nanophotonic optical forces, optothermal super-cavitation, and nanoscale thermo-fluids. An essential aspect of this work will be the integration of research with education and training of the next generation of scientists and engineers in multi-disciplinary fields, which are crucial for the technology-intensive U.S. industries. We will educate graduate students at Notre Dame and undergraduate researchers at the Colorado Mesa University (CM), a Primarily Undergraduate Institution serving nearly 10,000 students including many rural, first-generation, non-traditional (single parents, veterans and returning students), Hispanic, and other student groups underrepresented in STEM disciplines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可以高速通过液体推动的纳米颗粒(称为“纳米晶木剂”)可以在诸如靶向流量递送,原位诊断和纳米制动等应用中起重要作用。对于此类应用,控制高速纳米晶体器的方向至关重要。但是,高速纳米晶体大多是由随机方向的力推动的,而引导的纳米翼型人目前仅限于缓慢的速度。 因此,设计完全可控但动作快速的纳米驱动器具有巨大的技术潜力。 最近的实验观察到,极快(100,000微米/s)的金纳米颗粒游泳者可以用光作为外部能源引导。但是,基本机制尚未完全理解。这个渴望的项目将通过研究由光驱动的纳米颗粒的力和能量平衡来迈出第一步,以了解这一现象。纳米晶体器运动运动的实验和数值模拟的结合将提供基本的理解纳米翼木器的动力学,并解决有关其运动基本机制的问题。 反过来,这将提供新的信息,这些信息可能会导致广泛的高级纳米工程应用,例如在表面上有选择地打印纳米结构,用于感应应用或将药物携带的纳米晶体器运送到皮肤下的生物细胞向皮肤下的生物细胞使用可见的近红外光源。这个急切的项目将调查一个假设,即当纳米颗粒被表面等离子体共振(SPR)峰的光激发时,围绕粒子的纳米级气泡(即超级储物)。 这提供了一个近乎无摩擦的环境,只要气泡可以保持完整,它就可以高速移动。 该项目的目的是通过分析使用多尺度建模和实验技术在超级浪费气泡内移动时,通过分析力(光学和流体力)来检验这一假设。该项目由两个任务组成。 首先,将进行多尺度建模,以了解超浪费中的纳米颗粒动力学。 其次,将进行实验以观察纳米温剂动力学并验证计算结果。该项目将揭开涉及纳米光学功能,optothermal超级浪费和纳米级热流体的耦合作用的基本物理。 这项工作的一个重要方面将是将研究与多学科领域的下一代科学家和工程师的教育和培训的整合,这对于技术密集型美国工业至关重要。 We will educate graduate students at Notre Dame and undergraduate researchers at the Colorado Mesa University (CM), a Primarily Undergraduate Institution serving nearly 10,000 students including many rural, first-generation, non-traditional (single parents, veterans and returning students), Hispanic, and other student groups underrepresented in STEM disciplines.This award reflects NSF's statutory mission and has been deemed值得通过基金会的智力优点和更广泛的影响审查标准来通过评估来支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced thermal transport across the interface between charged graphene and poly(ethylene oxide) by non-covalent functionalization
- DOI:10.1016/j.ijheatmasstransfer.2021.122188
- 发表时间:2021-11
- 期刊:
- 影响因子:5.2
- 作者:Siyu Tian;Dezhao Huang;Zhihao Xu;Shiwen Wu;T. Luo;Guoping Xiong
- 通讯作者:Siyu Tian;Dezhao Huang;Zhihao Xu;Shiwen Wu;T. Luo;Guoping Xiong
Analytical model of optical force on supercavitating plasmonic nanoparticles
超空泡等离子体纳米颗粒的光学力分析模型
- DOI:10.1364/oe.491699
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Mandal, Amartya;Lee, Eungkyu;Luo, Tengfei
- 通讯作者:Luo, Tengfei
Negative optical force field on supercavitating titanium nitride nanoparticles by a single plane wave
单平面波超空化氮化钛纳米颗粒的负光学力场
- DOI:10.1515/nanoph-2021-0503
- 发表时间:2021
- 期刊:
- 影响因子:7.5
- 作者:Lee, Eungkyu;Luo, Tengfei
- 通讯作者:Luo, Tengfei
Molecular-Level Understanding of Efficient Thermal Transport across the Silica–Water Interface
- DOI:10.1021/acs.jpcc.1c06571
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Zhihao Xu;Dezhao Huang;T. Luo
- 通讯作者:Zhihao Xu;Dezhao Huang;T. Luo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tengfei Luo其他文献
Thermal transport in thermoelectrics from first-principles calculations
根据第一性原理计算热电学中的热传输
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Keivan Esfarjani;Junichiro Shiorai;Takuma Shiga;Zhiting Tian;Tengfei Luo;Gang Chen - 通讯作者:
Gang Chen
Beyond lotus: Plasma nanostructuring enables efficient energy and water conversion and use
超越莲花:等离子体纳米结构可实现能源和水的高效转换和利用
- DOI:
10.1016/j.nanoen.2019.104125 - 发表时间:
2019-12 - 期刊:
- 影响因子:17.6
- 作者:
Yikuan Tian;Huachao Yang;Shenghao Wu;Jianhua Yan;Kefa Cen;Tengfei Luo;Guoping Xiong;Yang Hou;Zheng Bo;Kostya Ken Ostrikov - 通讯作者:
Kostya Ken Ostrikov
Mixing and energy transfer in compressible Rayleigh-Taylor turbulence for initial isothermal stratification
初始等温分层的可压缩瑞利-泰勒湍流中的混合和能量传递
- DOI:
10.1103/physrevfluids.7.104608 - 发表时间:
2022-10 - 期刊:
- 影响因子:2.7
- 作者:
Tengfei Luo;Jianchun Wang - 通讯作者:
Jianchun Wang
Role of Hydrogen Bonds in Thermal Transport across Hard/Soft Material Interfaces
氢键在硬/软材料界面热传输中的作用
- DOI:
10.1021/acsami.6b12073 - 发表时间:
2016 - 期刊:
- 影响因子:9.5
- 作者:
Teng Zhang;Ashley R. Gans-Forres;Eungkyu Lee;Xueqiang Zhang;Chen Qu;Yunsong Pang;Fangyuan Sun;Tengfei Luo - 通讯作者:
Tengfei Luo
Absence of KHDC3L mutations in Chinese patients with recurrent and sporadic hydatidiform moles.
中国复发性和散发性葡萄胎患者不存在 KHDC3L 突变。
- DOI:
10.1016/j.cancergen.2013.09.003 - 发表时间:
2013 - 期刊:
- 影响因子:1.9
- 作者:
Wei Zhao;Alanuer Muhetaer;Tengfei Luo;W. Zhou;Cheng Qi;Xiaoduan Chen;Xiaofei Zhang;Zhifen Zhang;C. Déry;R. Slim;J. Qian - 通讯作者:
J. Qian
Tengfei Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tengfei Luo', 18)}}的其他基金
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341995 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
- 批准号:
2332270 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
ISS: Plasmonic Bubble Enabled Nanoparticle Deposition under Micro-Gravity
ISS:微重力下等离子气泡实现纳米颗粒沉积
- 批准号:
2224307 - 财政年份:2022
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
US-Japan Joint Workshop on Thermal Transport, Materials Informatics and Quantum Computing
美日热传输、材料信息学和量子计算联合研讨会
- 批准号:
2124850 - 财政年份:2021
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Discover and Understand Microporous Polymers for Size-sieving Separation Membranes using Active Learning
使用主动学习发现和了解用于尺寸筛分分离膜的微孔聚合物
- 批准号:
2102592 - 财政年份:2021
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Collaborative Research: Using molecular functionalization to tune nanoscale interfacial energy and momentum transport
合作研究:利用分子功能化来调节纳米级界面能量和动量传输
- 批准号:
2001079 - 财政年份:2020
- 资助金额:
$ 16.5万 - 项目类别:
Continuing Grant
Collaborative Research: Chemically Modified, Plasma-Nanoengineered Graphene Nanopetals for Spontaneous, Self-Powered and Efficient Oil Contamination Remediation
合作研究:化学改性、等离子体纳米工程石墨烯纳米花瓣用于自发、自供电和高效的石油污染修复
- 批准号:
1949910 - 财政年份:2020
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Synergistic Effect of Graphene Plasmonics and Nanoscale Spatial Confinement on Solar-Driven Water Phase Change
合作研究:了解石墨烯等离子体和纳米尺度空间约束对太阳能驱动水相变的协同效应
- 批准号:
1937923 - 财政年份:2020
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Highly Sensitive Multiplexed Nanocone Array for Point-of-Care Pan-Cancer Screening
用于护理点泛癌症筛查的高灵敏度多重纳米锥阵列
- 批准号:
1931850 - 财政年份:2019
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Thermal Evaporation around Optically-Excited Functionalized Nanoparticles
光激发功能化纳米颗粒周围的热蒸发
- 批准号:
1706039 - 财政年份:2017
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant