ISS: Plasmonic Bubble Enabled Nanoparticle Deposition under Micro-Gravity
ISS:微重力下等离子气泡实现纳米颗粒沉积
基本信息
- 批准号:2224307
- 负责人:
- 金额:$ 72.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Novel technologies that are simple and cost-effective for fabricating highly sensitive biosensors may significantly benefit a wide range of important applications, such as early detection of epidemic/pandemic infectious disease, cancers, and other biological agents. A major challenge for such detection is the low concentration of the target molecules. This project will leverage the fluid flow around a thermal bubble on a surface, concentrating and depositing the target molecules in the liquid sample, to enhance their detectability. The PI will perform microgravity experiments at the International Space Station to investigate the concentration/deposition processes, which will enable the development of improved sensing techniques for disease detection, cancer diagnosis and environmental monitoring. Given the potential transformative impacts for terrestrial applications, this project is aligned with the mission of CASIS to leverage space research to benefit life on earth. This research project will also educate and train graduate and undergraduate students from under-represented groups at Notre Dame. Through this project, the PI will cultivate a future workforce for the U.S. manufacturing and healthcare industries. The PI will also outreach to the local high schools and participate in local area science events to extend the outreach of this project. This project aims to understand the flow phenomena around a thermal bubble generated on a surface by a laser excitation. The flow pattern around the bubble can collect and eventually deposit colloidal particles in the liquid onto the surface. The overarching goal of this project is to understand the flow and deposition mechanism in order to control the deposition of suspended particles and thus enable new technologies for sensing applications. The PI will combine the microgravity experiments in the ISS and comparative terrestrial experiments complemented by multi-physics modeling to achieve this understanding. The micro-gravity environment in the ISS will provide a unique platform to unlock the fundamental mechanism of bubble nucleation, growth, and detachment. The lack of thermal convection in the ISS will allow the decoupling of the contribution of Marangoni effect from thermal convection effect to elucidate their roles in collecting colloidal particles and depositing them on the surface. This research will improve the understanding of the fundamental opto-thermal-fluidic mechanism of the thermal bubble deposition process, which will contribute to advancing the fields of nanoscale interactions, thermofluids and biosensing. This research project will also educate and train graduate and undergraduate students from under-represented groups at Notre Dame. Through this project, the PI will cultivate a future workforce for the U.S. manufacturing and healthcare industries. The PI will also outreach to the local high schools and participate in local area science events to extend the outreach of this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于制造高度敏感的生物传感器而言,简单且具有成本效益的新型技术可能会显着受益于广泛的重要应用,例如早期发现流行/大流行感染性疾病,癌症和其他生物学剂。这种检测的主要挑战是目标分子的低浓度。该项目将利用表面上的热气泡周围的流体流动,将靶分子集中并沉积在液体样品中,以增强其可检测性。 PI将在国际空间站进行微重力实验,以研究浓度/沉积过程,这将能够开发改进的疾病检测,癌症诊断和环境监测的感应技术。鉴于对地面应用的潜在变革性影响,该项目与Casis的使命一致,以利用太空研究来使地球上的生命受益。该研究项目还将在巴黎圣母院(Notre Dame)教育和培训毕业生和本科生。通过该项目,PI将为美国制造业和医疗保健行业培养未来的劳动力。 PI还将向当地高中推广,并参加本地科学活动,以扩大该项目的宣传。该项目旨在了解激光激发在表面产生的热气泡周围的流动现象。气泡周围的流动模式可以收集并最终将胶体颗粒沉积在液体上。该项目的总体目标是了解流动和沉积机制,以控制悬浮颗粒的沉积,从而实现用于传感应用的新技术。 PI将结合ISS中的微重力实验和比较陆地实验,并通过多物理建模互补,以实现这一理解。国际空间站中的微夺取环境将提供一个独特的平台,以解锁气泡成核,生长和脱离的基本机制。 ISS中缺乏热对流将允许将Marangoni效应从热对流效应中脱成贡献,以阐明其在收集胶体颗粒并将其沉积在表面上的作用。这项研究将提高对热气泡沉积过程的基本光热富富机制的理解,这将有助于推进纳米级相互作用,热流体和生物传感的领域。该研究项目还将在巴黎圣母院(Notre Dame)教育和培训毕业生和本科生。通过该项目,PI将为美国制造业和医疗保健行业培养未来的劳动力。 PI还将向当地高中推广,并参加本地科学活动,以扩大该项目的宣传。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估审查标准来通过评估来获得支持的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analytical model of optical force on supercavitating plasmonic nanoparticles
超空泡等离子体纳米颗粒的光学力分析模型
- DOI:10.1364/oe.491699
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Mandal, Amartya;Lee, Eungkyu;Luo, Tengfei
- 通讯作者:Luo, Tengfei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tengfei Luo其他文献
Thermal transport in thermoelectrics from first-principles calculations
根据第一性原理计算热电学中的热传输
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Keivan Esfarjani;Junichiro Shiorai;Takuma Shiga;Zhiting Tian;Tengfei Luo;Gang Chen - 通讯作者:
Gang Chen
Beyond lotus: Plasma nanostructuring enables efficient energy and water conversion and use
超越莲花:等离子体纳米结构可实现能源和水的高效转换和利用
- DOI:
10.1016/j.nanoen.2019.104125 - 发表时间:
2019-12 - 期刊:
- 影响因子:17.6
- 作者:
Yikuan Tian;Huachao Yang;Shenghao Wu;Jianhua Yan;Kefa Cen;Tengfei Luo;Guoping Xiong;Yang Hou;Zheng Bo;Kostya Ken Ostrikov - 通讯作者:
Kostya Ken Ostrikov
Mixing and energy transfer in compressible Rayleigh-Taylor turbulence for initial isothermal stratification
初始等温分层的可压缩瑞利-泰勒湍流中的混合和能量传递
- DOI:
10.1103/physrevfluids.7.104608 - 发表时间:
2022-10 - 期刊:
- 影响因子:2.7
- 作者:
Tengfei Luo;Jianchun Wang - 通讯作者:
Jianchun Wang
Role of Hydrogen Bonds in Thermal Transport across Hard/Soft Material Interfaces
氢键在硬/软材料界面热传输中的作用
- DOI:
10.1021/acsami.6b12073 - 发表时间:
2016 - 期刊:
- 影响因子:9.5
- 作者:
Teng Zhang;Ashley R. Gans-Forres;Eungkyu Lee;Xueqiang Zhang;Chen Qu;Yunsong Pang;Fangyuan Sun;Tengfei Luo - 通讯作者:
Tengfei Luo
Absence of KHDC3L mutations in Chinese patients with recurrent and sporadic hydatidiform moles.
中国复发性和散发性葡萄胎患者不存在 KHDC3L 突变。
- DOI:
10.1016/j.cancergen.2013.09.003 - 发表时间:
2013 - 期刊:
- 影响因子:1.9
- 作者:
Wei Zhao;Alanuer Muhetaer;Tengfei Luo;W. Zhou;Cheng Qi;Xiaoduan Chen;Xiaofei Zhang;Zhifen Zhang;C. Déry;R. Slim;J. Qian - 通讯作者:
J. Qian
Tengfei Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tengfei Luo', 18)}}的其他基金
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341995 - 财政年份:2024
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
- 批准号:
2332270 - 财政年份:2024
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
US-Japan Joint Workshop on Thermal Transport, Materials Informatics and Quantum Computing
美日热传输、材料信息学和量子计算联合研讨会
- 批准号:
2124850 - 财政年份:2021
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Discover and Understand Microporous Polymers for Size-sieving Separation Membranes using Active Learning
使用主动学习发现和了解用于尺寸筛分分离膜的微孔聚合物
- 批准号:
2102592 - 财政年份:2021
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Dynamics of Nanoparticles in Light-Excited Supercavitation
EAGER:合作研究:光激发超空化中纳米粒子的动力学
- 批准号:
2040565 - 财政年份:2020
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Collaborative Research: Using molecular functionalization to tune nanoscale interfacial energy and momentum transport
合作研究:利用分子功能化来调节纳米级界面能量和动量传输
- 批准号:
2001079 - 财政年份:2020
- 资助金额:
$ 72.62万 - 项目类别:
Continuing Grant
Collaborative Research: Chemically Modified, Plasma-Nanoengineered Graphene Nanopetals for Spontaneous, Self-Powered and Efficient Oil Contamination Remediation
合作研究:化学改性、等离子体纳米工程石墨烯纳米花瓣用于自发、自供电和高效的石油污染修复
- 批准号:
1949910 - 财政年份:2020
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Synergistic Effect of Graphene Plasmonics and Nanoscale Spatial Confinement on Solar-Driven Water Phase Change
合作研究:了解石墨烯等离子体和纳米尺度空间约束对太阳能驱动水相变的协同效应
- 批准号:
1937923 - 财政年份:2020
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Highly Sensitive Multiplexed Nanocone Array for Point-of-Care Pan-Cancer Screening
用于护理点泛癌症筛查的高灵敏度多重纳米锥阵列
- 批准号:
1931850 - 财政年份:2019
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Thermal Evaporation around Optically-Excited Functionalized Nanoparticles
光激发功能化纳米颗粒周围的热蒸发
- 批准号:
1706039 - 财政年份:2017
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
相似国自然基金
等离子体片气泡深度注入在内磁层和电离层中产生的效应
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
液相气泡放电等离子体与重油模型化合物相互作用的机理研究
- 批准号:52107172
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
液相气泡放电等离子体与重油模型化合物相互作用的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等离子体片气泡深度注入在内磁层和电离层中产生的效应
- 批准号:42174197
- 批准年份:2021
- 资助金额:59.00 万元
- 项目类别:面上项目
水中气泡纳秒脉冲放电冲击波精准调控和声能效率优化
- 批准号:51907108
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Plasmonic Mg-based catalysts for low temperature sunlight-assisted CO2 activation (MgCatCO2Act)
用于低温阳光辅助 CO2 活化的等离子体镁基催化剂 (MgCatCO2Act)
- 批准号:
EP/Y037294/1 - 财政年份:2025
- 资助金额:
$ 72.62万 - 项目类别:
Research Grant
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
- 批准号:
2349887 - 财政年份:2024
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Fabrication of chiral plasmonic nanogaps by hot electron-induced metal growth for enhanced enantioselective light-matter interactions
通过热电子诱导金属生长制造手性等离子体纳米间隙以增强对映选择性光-物质相互作用
- 批准号:
23K23191 - 财政年份:2024
- 资助金额:
$ 72.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Infra-Plas: Colloidal Quantum Dots for Short-Wave Infrared Plasmonic Lasers
Infra-Plas:用于短波红外等离子激光器的胶体量子点
- 批准号:
EP/Z000912/1 - 财政年份:2024
- 资助金额:
$ 72.62万 - 项目类别:
Fellowship
Rapid Plasmonic PCR Device and Platform for Single Step Disease Detection and Treatment To Enable Infectious Disease Symptom To Treatment In Minutes
用于单步疾病检测和治疗的快速等离子 PCR 设备和平台,可在几分钟内从传染病症状到治疗
- 批准号:
10076382 - 财政年份:2023
- 资助金额:
$ 72.62万 - 项目类别:
Grant for R&D