Collaborative Research: CPS: TTP Option: Medium: i-HEAR: immersive Human-On-the-Loop Environmental Adaptation for Stress Reduction

合作研究:CPS:TTP 选项:中:i-HEAR:沉浸式人类循环环境适应以减轻压力

基本信息

  • 批准号:
    2039089
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

There is no question that indoor environments are often uncomfortable or unhealthy for occupants. This is an even more critical issue in healthcare facilities, where patients may experience the stressful effects of poor thermal, luminous, and acoustic environments more acutely. With complementary expertise from engineering and psychology, the proposed research is focused on creating a human-on-the-loop, responsive indoor environmental system with the potential to offer better quality of care in hospitals. The outputs of this project will have profound societal impacts on the wellbeing of both healthy individuals and on recovering sick individuals. Research outcomes will enable real time human-built environment interaction to minimize stress and optimize performance in any built environment, and ultimately lead towards economic benefits achieved through wellness and higher productivity. Improved indoor environmental quality in hospital settings will improve patient healing, which is an important societal benefit. Similar strategies can be used for educational facilities, and office buildings. This research encourages Broadening Participation through inclusion of individuals from underrepresented groups (female and Latinx Co-PIs), female and minority students, and a minority serving lead institution from an EPSCoR state. Results will be disseminated broadly through scientific publications and seminars, and K-12 outreach, including STEM competitions, and summer programs.Indoor environmental quality (IEQ) not only impacts the physical health of patients, but also their psychological health. Yet environmental controls for heating, cooling and ventilation, noise attenuation, and lighting in hospitals are based on outdated models of how hospitals function, who occupies these settings, and what emerging technologies are available. As a result, many hospitals are just functionally adequate, often likely to be too cold or hot, too loud, or too bright. In order to capitalize on the healing potential of the hospital’s built environment, we propose a three-year collaborative effort between the University of Hawaii at Manoa, Arizona State University, and Drexel University to develop innovative biosensor technologies, deep-learning health data analytics, and user-centric control algorithms to connect these three domains in which the interdependencies of the physiological, physical, and psychological will be investigated, quantified, and addressed. The team is partnering with the Children’s Hospital of Philadelphia (CHOP) to validate the approach. Specific anticipated engineering/science contributions include: 1) innovative cyber-physical system architecture using heterogeneous biosensing and data analytics for real-time control; 2) new sensor fusion based technology for non-invasive, precise physiological measures that are surrogate stress indicators; 3) progressive development of innovative human centric deep model linking physiological biometrics to psychological measures, and connecting environmental factors to psychological measures facilitated with physiological biometrics; 4) new stress responsive real-time supervisory control strategies including optimal environmental adjustment, and 5) multi-level system evaluation via virtual, laboratory, and field testing at a hospital environment at CHOP.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
毫无疑问,室内环境通常对居住者感到不舒服或不健康。在医疗机构中,这是一个更为关键的问题,患者可能会更加敏锐地遇到较差的热,发光和声学环境的压力影响。凭借工程和心理学的完整专业知识,拟议的研究重点是创建一个人类的人类,反应迅速的室内环境系统,并有可能在医院提供更好的护理质量。该项目的产出将对健康个体和恢复病人的福祉产生深远的社会影响。研究成果将使实时人类建立的环境互动能够最大程度地减少压力并在任何建筑环境中优化绩效,并最终导致通过健康和更高的生产力实现的经济利益。改善医院环境中室内环境质量将改善患者康复,这是重要的社会益处。类似的策略可以用于教育设施和办公楼。这项研究通过包括来自代表性不足的群体(女性和拉丁人的副派),女学生和少数族裔学生以及来自EPSCOR州的主要机构的少数族裔的个人,鼓励扩大参与。结果将通过科学出版物和半人物以及K-12外展(包括STEM比赛和夏季计划)广泛传播结果。Indoor环境质量(IEQ)不仅会影响患者的身体健康,而且会影响其心理健康。然而,用于供暖,冷却和通风,噪音衰减和照明的环境控制是基于医院功能,占据这些环境以及新兴技术可用的过时模型。结果,许多医院在功能上足够,通常太冷,太热,太大或太亮。 In order to capitalize on the healing potential of the hospital’s built environment, we propose a three-year collaborative effort between the University of Hawaii at Manoa, Arizona State University, and Drexel University to develop innovative biosensor technologies, deep-learning health data analytics, and user-centric control algorithms to connect these three domains in Which the interdependencies of the physical, physical, and psychological will be investigated, quantified, and解决。该团队正在与费城儿童医院(CHOP)合作以验证该方法。特定的预期工程/科学贡献包括:1)使用异质生物传感和数据分析进行实时控制的创新网络物理系统架构; 2)基于传感器融合的新技术,用于替代压力指标的非侵入性,精确的物理测量; 3)将生理生物识别技术与心理测量联系起来的创新性人类以人为中心的深度模型的逐步发展,并将环境因素与用物理生物识别技术制备的心理测量联系起来; 4)新的压力响应敏感的实时监督控制策略,包括最佳环境调整,5)通过CHOP的医院环境中的虚拟,实验室和现场测试进行多级系统评估。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查的审查标准来通过评估来通过评估来获得的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Laser-Based Noncontact Blood Pressure Estimation Using Human Body Displacement Waveforms
利用人体位移波形进行基于激光的非接触式血压估算
  • DOI:
    10.1109/ims37962.2022.9865553
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oyamada Yuji;Koshisaka Takehito;Stankaitis Grant;Islam Shekh M.M.;Lubecke Victor M.;Boric-Lubecke Olga;Sakamoto Takuya
  • 通讯作者:
    Sakamoto Takuya
Physiological Motion Sensing via Channel State Information in NextG Millimeter-Wave Communications Systems
  • DOI:
    10.1109/jmw.2022.3224375
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ishmael, Khaldoon M.;Pan, Yanjun;Boric-Lubecke, Olga
  • 通讯作者:
    Boric-Lubecke, Olga
Heart rate detection using single-channel Doppler radar system
使用单通道多普勒雷达系统进行心率检测
Effect of respiration harmonics on beat-to-beat analysis of heart signal
呼吸谐波对心脏信号逐次心跳分析的影响
  • DOI:
    10.1109/ims37964.2023.10188004
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sameera, Jannatun Noor;Ishrak, Mohammad Shadman;Lubecke, Victor;Boric-Lubecke, Olga
  • 通讯作者:
    Boric-Lubecke, Olga
Identity Authentication in Two-Subject Environments Using Microwave Doppler Radar and Machine Learning Classifiers
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olga Boric-Lubecke其他文献

Olga Boric-Lubecke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olga Boric-Lubecke', 18)}}的其他基金

Robust Physiological Signal Extraction using High Precision Hardware and Personalized Signal Processing
使用高精度硬件和个性化信号处理进行稳健的生理信号提取
  • 批准号:
    0926076
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
SST: GOALI: MIMO Techniques for Remote Sensing of Physiological Motion
SST:GOALI:生理运动遥感的 MIMO 技术
  • 批准号:
    0428975
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

代谢酶CPS1调控PD-L1表达重塑肝癌免疫微环境的作用及机制研究
  • 批准号:
    82303340
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
先锋转录因子FOXA2调控CPS1介导尿素循环在急性肝衰竭肝性脑病中的机制研究
  • 批准号:
    82300699
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
CPs/MOFs介导多烯衍生物拓扑光聚合的高立体选择性构建策略研究
  • 批准号:
    22361004
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
尿素循环关键酶CPS1表达异常在肺癌转移中的作用和机制研究
  • 批准号:
    82273390
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
GPER通过“barcode”磷酸化修饰调控β-arrestin/SH3-CPs信号介导肺腺癌EGFR-TKI原发耐药的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
  • 批准号:
    2423130
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了