Collaborative Research: Deconstructing the contributions of muscle intrinsic mechanics to the control of locomotion using a novel Muscle Avatar approach

合作研究:使用新颖的肌肉化身方法解构肌肉内在力学对运动控制的贡献

基本信息

  • 批准号:
    2016049
  • 负责人:
  • 金额:
    $ 54.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Moving animals achieve impressive athletic feats of endurance, speed, and agility in complex environments. Animal locomotion is particularly impressive in contrast to that of human-engineered machines. The stability, agility and energy economy of current robots, prostheses and exoskeletons remains poor compared to animals. This pronounced gap between animal performance and technology stems, in part, from fundamental gaps in the understanding of muscle physiology and mechanical function. Muscle is the only actively controlled tissue in animal musculoskeletal systems, and therefore plays a central role in enabling and controlling movement. Yet, developments over the past 20 years have led to growing recognition that important problems in muscle physiology and movement sciences remain unsolved and the theoretical foundation of the field remains incomplete. In particular, the ability to model and predict muscle function under dynamic and perturbed locomotor conditions remains poor. This project will combine innovative experimental techniques with modeling approaches to develop new muscle models that can explain and predict muscle movement under a broad range of conditions. The findings have potential to transform numerous fields— enabling neuroscientists, biologists, clinicians and biomedical engineers to ask questions about human and animal behavior, control of motion, function of muscles and bones, and capacity of the nervous system and muscles to change. The research team will collaborate with colleagues in clinical and engineering fields to translate the findings into applications in human rehabilitation, treatment of disease and injury, and the design and control of assistive technology such as prosthetics and exoskeleton devices.In the field of animal neuromechanics, a pronounced gap exists between ‘top down’ approaches — those that focus on whole-animal behavior but lack insight into underlying mechanisms— vs ‘bottom-up’ approaches — those that characterize mechanisms but lack insight into their contributions to animal behavior. The team will develop new tools to bridge this gap: 1) predictive muscle models that include intrinsic viscoelastic properties; and 2) experimental approaches that integrate across levels. This project’s novel ‘muscle avatar’ approach will help bridge this gap, and enable rigorous analysis of intrinsic muscle property and neural activation contributions to control of locomotion. Aim 1 tests the ability of the muscle avatar approach to replicate steady and perturbed in vivo work loop patterns in mouse and guinea fowl muscles. In Aim 2, in vivo muscle strain, activation, and force will be measured during steady and perturbed running in guinea fowl muscles, and the muscle avatar will be used to quantitatively assess how intrinsic muscle properties and neural drive each contribute to stabilizing responses. In Aim 3, alternative muscle models will be developed, and the ability of each model to predict in vivo muscle function in high strain and perturbed contraction conditions will be compared. Computationally tractable muscle models are essential for closed loop neuromechanical simulations of locomotion, which are increasingly used to understand how muscle function and sensorimotor control change in response to aging, injury and neuromuscular disorders. The findings could inform clinical rehabilitation strategies and the design of assistive devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
移动的动物在复杂的环境中取得了令人印象深刻的耐力、速度和敏捷性,与人类工程机器相比,动物的运动尤其令人印象深刻,但与人类工程机器相比,当前的机器人、假肢和外骨骼的稳定性、敏捷性和能源经济性仍然较差。动物的表现和技术之间的这种明显差距部分源于对肌肉生理学和机械功能理解的根本差距。肌肉是动物肌肉骨骼系统中唯一主动控制的组织,因此发挥作用。然而,过去 20 年的发展使人们越来越认识到,肌肉生理学和运动科学中的重要问题仍未解决,该领域的理论基础仍然不完整,特别是建模能力。在动态和扰动运动条件下预测肌肉功能仍然很差,该项目将采用创新的实验技术和建模方法来开发新的肌肉模型,这些模型可以解释和预测各种条件下的肌肉运动,这些发现有可能改变许多领域。使神经科学家,生物学家、竞争对手和生物医学工程师将提出有关人类和动物行为、运动控制、肌肉和骨骼功能以及神经系统和肌肉变化能力的问题。研究团队将与临床和工程领域的同事合作进行翻译。这些发现应用于人类康复、疾病和损伤的治疗以及假肢和外骨骼设备等辅助技术的设计和控制。在动物神经力学领域,“自上而下”的方法之间存在明显的差距——那些专注于整个动物的行为但是缺乏对潜在机制的洞察——与“自下而上”的方法相比——那些描述机制但缺乏对其对动物行为的贡献的洞察。该团队将开发预测性新工具来弥补这一差距:1)包含内在粘弹性特性的肌肉模型; 2)跨层次整合的实验方法将有助于弥补这一差距,并能够严格分析内在肌肉特性和神经激活对运动控制的贡献。目标 1 测试肌肉化身的能力。方法在小鼠和珍珠鸡肌肉中复制稳定和扰动的体内工作循环模式在目标 2 中,将在珍珠鸡肌肉稳定和扰动运行期间测量体内肌肉应变、激活和力,并使用肌肉化身。旨在评估内在肌肉特性和神经驱动如何各自有助于稳定反应。在目标 3 中,将定量开发替代肌肉模型,并且每个模型预测高应变和扰动收缩条件下的体内肌肉功能的能力。计算可处理的肌肉模型对于运动的闭环神经力学模拟至关重要,它越来越多地用于了解肌肉功能和感觉运动控制如何响应衰老、损伤和神经肌肉疾病而变化。这些发现可以为临床康复策略和设计提供信息。这反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A century of comparative biomechanics: emerging and historical perspectives on an interdisciplinary field
比较生物力学的一个世纪:跨学科领域的新兴视角和历史视角
  • DOI:
    10.1242/jeb.245876
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Patek, S. N.;Daley, Monica A.;Sane, Sanjay P.
  • 通讯作者:
    Sane, Sanjay P.
Kinematic Trajectories in Response to Speed Perturbations in Walking Suggest Modular Task-Level Control of Leg Angle and Length
响应步行速度扰动的运动轨迹建议对腿部角度和长度进行模块化任务级控制
  • DOI:
    10.1093/icb/icac057
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Schwaner, M. J.;Nishikawa, K. C.;Daley, M. A.
  • 通讯作者:
    Daley, M. A.
Understanding muscle function during perturbed in vivo locomotion using a muscle avatar approach
使用肌肉化身方法了解体内运动扰动期间的肌肉功能
  • DOI:
    10.1242/jeb.244721
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Rice, Nicole;Bemis, Caitlin M.;Daley, Monica A.;Nishikawa, Kiisa
  • 通讯作者:
    Nishikawa, Kiisa
Editorial: Comparative neuromechanical circuits of the sensorimotor system
社论:感觉运动系统的比较神经机械回路
  • DOI:
    10.3389/fnint.2022.975948
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Nichols, T. Richard;Daley, Monica A.
  • 通讯作者:
    Daley, Monica A.
Not solely a motor: the role of muscles in sensory mechanisms and integrative control
不仅仅是运动:肌肉在感觉机制和综合控制中的作用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Monica Daley其他文献

The effects & mechanisms of increasing running step rate: A feasibility study in a mixed-sex group of runners with patellofemoral pain.
效果
Potential for elastic soft tissue deformation and mechanosensory function within the lumbosacral spinal canal of birds
鸟类腰骶椎管内弹性软组织变形和机械感觉功能的潜力
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Kamska;Monica Daley;Alexander Badri
  • 通讯作者:
    Alexander Badri
A subpopulation of spinocerebellar tract neurons regulates the stability of bipedal stepping
脊髓小脑束神经元亚群调节双足行走的稳定性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baruch Haimson;Y. Hadas;Artur Kania;Monica Daley;Y. Cinnamon;;Tov;A. Klar
  • 通讯作者:
    A. Klar
Spinal dI2 interneurons regulate the stability of bipedal stepping
脊髓 dI2 中间神经元调节双足行走的稳定性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baruch Haimson;Y. Hadas;A. Kania;Monica Daley;Y. Cinnamon;Aharon Lev;A. Klar
  • 通讯作者:
    A. Klar

Monica Daley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Monica Daley', 18)}}的其他基金

NSF-BII: Integrative Movement Sciences Institute
NSF-BII:综合运动科学研究所
  • 批准号:
    2319710
  • 财政年份:
    2024
  • 资助金额:
    $ 54.93万
  • 项目类别:
    Cooperative Agreement
Cross-disciplinary innovations in organismal biology through mathematical and physical modeling
通过数学和物理建模实现有机生物学的跨学科创新
  • 批准号:
    2040544
  • 财政年份:
    2021
  • 资助金额:
    $ 54.93万
  • 项目类别:
    Standard Grant
BII Design: Integrative Movement Sciences Institute (IMSI)
天地互连设计:综合运动科学研究所(IMSI)
  • 批准号:
    2021832
  • 财政年份:
    2020
  • 资助金额:
    $ 54.93万
  • 项目类别:
    Standard Grant
Mechanics and energetics of stable bipedal locomotion in uneven terrain: Does a trade-off exist between economy and stability?
不平坦地形中稳定双足运动的力学和能量学:经济性和稳定性之间是否存在权衡?
  • 批准号:
    BB/H005838/1
  • 财政年份:
    2010
  • 资助金额:
    $ 54.93万
  • 项目类别:
    Research Grant
PostDoctoral Research Fellowship in Biological Informatics FY 2006
2006财年生物信息学博士后研究奖学金
  • 批准号:
    0630664
  • 财政年份:
    2006
  • 资助金额:
    $ 54.93万
  • 项目类别:
    Fellowship

相似国自然基金

基于全文本引文解构的引用失范行为识别与生成机理研究
  • 批准号:
    72304181
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义定转子拓扑解构的爬壁机器人电磁驱动-吸附一体化机理研究
  • 批准号:
    52305022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铝锂合金镜像激光焊接组织解构与重构及缺陷分区靶向调控基础研究
  • 批准号:
    52305378
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于“批注-反思-研讨”协同阅读教学的过程解构与适应性智能教学策略重构的在线系统研究
  • 批准号:
    62377017
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
异质性漂绿行为的解构、阶变与干预政策研究
  • 批准号:
    72304271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: GOing GREEN at High Resolution - Spatially Deconstructing Environmental Quenching over 9 Billion Years
合作研究:以高分辨率走向绿色——空间解构超过 90 亿年的环境淬火
  • 批准号:
    2347348
  • 财政年份:
    2023
  • 资助金额:
    $ 54.93万
  • 项目类别:
    Standard Grant
Collaborative Research: GOing GREEN at High Resolution - Spatially Deconstructing Environmental Quenching over 9 Billion Years
合作研究:以高分辨率走向绿色——空间解构超过 90 亿年的环境淬火
  • 批准号:
    2206473
  • 财政年份:
    2022
  • 资助金额:
    $ 54.93万
  • 项目类别:
    Standard Grant
Reconstructing and deconstructing intracellular signaling at the membrane-cytosol interface
重建和解构膜-细胞质界面的细胞内信号传导
  • 批准号:
    10449754
  • 财政年份:
    2022
  • 资助金额:
    $ 54.93万
  • 项目类别:
Collaborative Research: GOing GREEN at High Resolution - Spatially Deconstructing Environmental Quenching over 9 Billion Years
合作研究:以高分辨率走向绿色——空间解构超过 90 亿年的环境淬火
  • 批准号:
    2206473
  • 财政年份:
    2022
  • 资助金额:
    $ 54.93万
  • 项目类别:
    Standard Grant
Reconstructing and deconstructing intracellular signaling at the membrane-cytosol interface
重建和解构膜-细胞质界面的细胞内信号传导
  • 批准号:
    10640274
  • 财政年份:
    2022
  • 资助金额:
    $ 54.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了