Collaborative Research: Constraining the thermal conditions of the subduction interface by integrating petrology and geodynamics

合作研究:通过整合岩石学和地球动力学来约束俯冲界面的热条件

基本信息

  • 批准号:
    2037543
  • 负责人:
  • 金额:
    $ 4.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Subduction zones are places on Earth where one of Earth's tectonic plates dives beneath another. They are the location of many societally-relevant hazards, including the generation of Earth's deadliest earthquakes, such as the 2011 Tohoku earthquake and associated tsunami, and volcanic eruptions such as those at Mt St Helens (1980) and Mt Pinatubo (1991). The processes that lead to these earthquakes and volcanoes are ultimately dependent on the thermal structure of subduction zones - that is how hot it is at great depths. Metamorphic rocks exhumed from ancient subduction zones contain unique records of the temperatures that they witnessed as they traveled down a subduction zone before being exhumed. Geodynamic models and geophysical observations provide estimates of the thermal structures of present-day subduction zones. Interestingly, the rock record suggests significantly warmer conditions than those predicted for modern subduction zones. The proposed work will investigate the reasons for this discrepancy, which may lie in the way we interpret conditions from the rocks, the way they are exhumed, or even in how we compare model predictions and the rock record.This proposal aims to address the rock-model discrepancy through two key questions: 1) Does our current interpretation of the rock record accurately represent the thermal structure of the associated ancient subduction zone? and 2) Did rocks get exhumed from ancient subduction zones that were hotter on average than modern subduction zones? To address Question 1 this team will determine P-T conditions for metamorphic rocks exhumed from five well-characterized localities that represent a range of thermal structures using relatively new analytical methods: trace element thermometers (e.g. Zr-in-rutile) and mineral inclusion barometers (e.g. quartz-in-garnet barometry). To address Question 2, they will develop geodynamical models of the ancient subduction zones represented by the exhumed rocks. These models will incorporate the effects of region-specific subduction dynamics, such as variations in slab age and subduction rate with time, subduction initiation, ridge subduction, and slab breakoff, when applicable. The model-predicted P-T conditions along the subduction interface will be compared with the newly produced P-T estimates to re-evaluate their disparity. The two-pronged approach of combining petrological observations and geodynamical modeling allows quantitative exploration of the thermal evolution of subduction zones. Subduction-related metamorphic rocks are the only direct samples of material from the plate interface; evaluating the P-T conditions using the latest thermobarometric approaches will provide the team with a more accurate and precise way to untangle the complex history they have experienced. Through geodynamical modeling, the effects of individual parameters on the thermal structure of subduction zones can be isolated, and this targeted approach will allow evaluation of possible explanations for the warm conditions that are recorded by exhumed rocks. The application of the two-pronged approach to the selected ancient subduction localities will allow researchers to determine whether the disparity can be reconciled. The results of this work have important implications for many processes, including geochemical cycling of volatiles, construction of continental crust, and the conditions that lead to arc volcanism. This work will engage graduate students and early career scientists in new collaborations between scientists of different disciplines (petrologists and geodynamicists) and at different institutions both in the US and abroad. EarthCache (TM) sites will be created in California (Franciscan and Catalina) as part of the project. These sites will engage the public in geoscience through the popular activity of geocaching and will disseminate information about subduction zone geology through information tied to direct observations of geologic features exhumed from subduction zones.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
俯冲带是地球上一个板块俯冲到另一个板块之下的地方。它们是许多与社会相关的灾害的发生地,包括地球上最致命的地震的发生,例如2011年东北地震和相关的海啸,以及火山喷发,例如圣海伦斯山(1980年)和皮纳图博山(1991年)的火山喷发。导致这些地震和火山的过程最终取决于俯冲带的热结构——即深部的温度。从古代俯冲带中挖掘出来的变质岩包含了它们在被挖掘之前沿俯冲带行进时所目睹的独特温度记录。地球动力学模型和地球物理观测提供了对当今俯冲带热结构的估计。有趣的是,岩石记录表明,这里的环境比现代俯冲带预测的要温暖得多。拟议的工作将调查这种差异的原因,这可能在于我们解释岩石条件的方式、挖掘岩石的方式,甚至在于我们如何比较模型预测和岩石记录。该提案旨在解决岩石问题- 两个关键问题造成的模型差异:1)我们目前对岩石记录的解释是否准确地代表了相关古代俯冲带的热结构? 2)岩石是否是从平均比现代俯冲带更热的古代俯冲带中挖掘出来的?为了解决问题 1,该团队将使用相对较新的分析方法确定从五个特征明确的地点挖掘出的变质岩的 P-T 条件,这些地点代表了一系列热结构:微量元素温度计(例如金红石中的锆)和矿物包裹体晴雨表(例如金红石中的锆)。石榴石中石英气压计)。为了解决问题 2,他们将开发以挖出的岩石为代表的古代俯冲带的地球动力学模型。这些模型将纳入特定区域俯冲动力学的影响,例如板块年龄和俯冲速率随时间的变化、俯冲起始、山脊俯冲和板块断裂(如果适用)。模型预测的沿俯冲界面的 P-T 条件将与新生成的 P-T 估计值进行比较,以重新评估它们的差异。结合岩石学观测和地球动力学建模的双管齐下的方法可以定量探索俯冲带的热演化。与俯冲有关的变质岩是来自板块界面的唯一直接物质样本;使用最新的温压方法评估 P-T 条件将为团队提供更准确和精确的方法来理清他们所经历的复杂历史。通过地球动力学建模,可以分离出各个参数对俯冲带热结构的影响,这种有针对性的方法将能够评估对挖掘出的岩石记录的温暖条件的可能解释。对选定的古代俯冲地点应用双管齐下的方法将使研究人员能够确定是否可以调和这种差异。这项工作的结果对许多过程具有重要意义,包括挥发物的地球化学循环、大陆地壳的构造以及导致弧火山活动的条件。这项工作将使研究生和早期职业科学家参与不同学科(岩石学家和地球动力学家)以及美国和国外不同机构的科学家之间的新合作。作为该项目的一部分,EarthCache (TM) 站点将在加利福尼亚州(Franciscan 和 Catalina)创建。这些站点将通过流行的地理藏宝活动让公众参与地球科学,并通过与从俯冲带挖掘出来的地质特征直接观察相关的信息传播有关俯冲带地质的信息。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Besim Dragovic其他文献

Coupled Lu–Hf and Sm–Nd geochronology on a single eclogitic garnet from the Huwan shear zone, China
中国胡湾剪切带单个榴辉岩石榴石的 Lu-Hf 和 Sm-Nd 耦合年代学
  • DOI:
    10.1016/j.chemgeo.2017.11.018
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Cheng Hao;Jeffrey D. Vervoort;Besim Dragovic;Diane Wilford;Lingmin Zhang
  • 通讯作者:
    Lingmin Zhang

Besim Dragovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Besim Dragovic', 18)}}的其他基金

Collaborative Research: Rodingites as Recorders of Tectonic Processes from the Seafloor to Convergence: A case study of the Dun Mountain Ophiolite Belt
合作研究:罗丁岩作为从海底到聚合的构造过程的记录者:以敦山蛇绿岩带为例
  • 批准号:
    2147572
  • 财政年份:
    2022
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing crystal clocks in metamorphic rocks: Using lithium in subduction zone garnets to decipher fluid release timescales
合作研究:开发变质岩中的晶体时钟:利用俯冲带石榴石中的锂来破译流体释放时间尺度
  • 批准号:
    2122513
  • 财政年份:
    2021
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining the thermal conditions of the subduction interface by integrating petrology and geodynamics
合作研究:通过整合岩石学和地球动力学来约束俯冲界面的热条件
  • 批准号:
    1850713
  • 财政年份:
    2019
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Standard Grant

相似国自然基金

边界约束下跨境铁路运输连通性格局与影响机制研究
  • 批准号:
    42371177
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
过约束对少自由度并联机构力学性能的影响机理及评价指标研究
  • 批准号:
    52365004
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
新型近球形钛粉整形改性及其约束钝化阻氧机制研究
  • 批准号:
    52304379
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不确定性与核心技术差距双重约束下内需变动对外贸稳定性与韧性的影响研究
  • 批准号:
    72373035
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
基于物理约束人工智能的缺资料流域山洪模拟方法研究
  • 批准号:
    42371086
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325312
  • 财政年份:
    2024
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining the Role of the Antarctic Slope Current on Tracer Exchange at the Antarctic Margin using Model Hierarchies
合作研究:利用模型层次结构约束南极坡流对南极边缘示踪剂交换的作用
  • 批准号:
    2319828
  • 财政年份:
    2024
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining the Role of the Antarctic Slope Current on Tracer Exchange at the Antarctic Margin using Model Hierarchies
合作研究:利用模型层次结构约束南极坡流对南极边缘示踪剂交换的作用
  • 批准号:
    2319829
  • 财政年份:
    2024
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325310
  • 财政年份:
    2024
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了