CAREER: Giant Tunability through Piezoelectric Resonant Acoustic Metamaterials for Radio Frequency Adaptive Integrated Electronics
职业:通过压电谐振声学超材料实现射频自适应集成电子器件的巨大可调性
基本信息
- 批准号:2034948
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Our well-being and livelihood, our education, our social interactions, and our knowledge of the fundamental sciences depend, more and more, on a host of advanced technologies, such as cloud-storage, edge-computing, machine learning, artificial intelligence (AI) and fifth-generation (5G) wireless communication. However, to allow these technologies to succeed, new hardware components such as more stable frequency synthesizers (FSs) based on novel materials and techniques will be critical and need to be developed. Similarly, the Internet-of-Things (IoT) has created a growing number of wireless nodes within an already congested spectrum. Therefore, new lower-power tunable front-end architectures that are capable of filtering interference signals and adapting to changing electromagnetic scenarios are needed to grant higher communication throughputs and longer battery lifetimes. To meet these challenges, this CAREER proposes to develop a new class of passive, tunable, and high-performance integrated resonant devices, namely the Piezoelectric Resonant Acoustic Metamaterials (pRAMs). Thanks to their unique, artificially produced and reconfigurable modal features, the development of pRAMs will enable new stable FSs, adaptive front ends for IoT radios and many other on-chip transducers for sensing and communication. The project team will collaborate with the Northeastern University’s Center for STEM Education to organize on-campus activities, as well as outreach visits to connect with underrepresented groups in local schools and communities. The project achievements will enrich both the undergraduate and the graduate courses that the Principal Investigator teaches on circuit theory and on advanced acoustic-based technologies for communication and sensing. The pRAMs will rely on the distinctive propagation features of acoustic metamaterials, built out of CMOS-compatible Aluminum Nitride (AlN) or Aluminum Scandium Nitride (AlScN) thin-films and embodying a periodic arrangement of magnetostrictive rods. Thanks to their unique, artificially produced and reconfigurable modal characteristics, pRAMs will surpass the material limitations that have prevented the achievement of low-loss acoustic resonant technologies, even with moderate frequency tuning ranges. This will allow the creation of new on-chip acoustic-based passives and will provide the means to achieve significantly more stable FSs for future networking components. Furthermore, pRAMs will allow the development of a new class of tunable channel-select-filters enabling future generations of IoT wireless nodes resilient to interference and consuming lower power. It is envisioned that by exploiting their new magnetosensitive behavior responsible for their large tuning range, pRAMs will likely pave the way towards a new class of chip-scale magnetometers, achieving the low limits of detection compatible to the challenging needs of critical biomagnetic and environmental applications, yet not requiring to be biased or cooled.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们的福祉和生计、我们的教育、我们的社会互动以及我们的基础科学知识越来越依赖于一系列先进技术,例如云存储、边缘计算、机器学习、人工智能(然而,为了使这些技术取得成功,基于新型材料和技术的更稳定的频率合成器 (FS) 等新的硬件组件将至关重要,并且需要进行类似的开发。物联网物联网 (IoT) 在已经拥挤的频谱中创建了越来越多的无线节点,因此需要能够过滤干扰信号并适应不断变化的电磁场景的新型低功耗可调谐前端架构,以实现更高的通信吞吐量和更长的通信时间。为了应对这些挑战,本职业建议开发一种新型无源、可调谐、高性能集成谐振器件,即压电谐振声学超材料。 (pRAM)。由于其独特的、人工生产的和可重新配置的模态特性,pRAM 的开发将为物联网无线电和许多其他用于传感和通信的片上传感器提供新的稳定的 FS、自适应前端。东北大学 STEM 教育中心组织校园活动以及外展访问,与当地学校和社区中代表性不足的群体建立联系。该项目的成果将丰富校长的本科生和研究生课程。研究者教授电路理论和先进的基于声学的通信和传感技术,pRAM 将依赖于声学超材料的独特传播特性,这些超材料由 CMOS 兼容的氮化铝 (AlN) 或氮化铝钪 (AlScN) 薄层制成。薄膜并体现了磁致伸缩棒的周期性排列,由于其独特的、人工生产的和可重构的模态特性,pRAM 将超越阻碍这一成就的材料限制。低损耗声学谐振技术,即使具有中等频率调谐范围,这也将允许创建新的基于声学的无源器件,并将为未来的网络组件提供实现更加稳定的 FS 的方法。新型可调通道选择滤波器的开发使未来几代物联网无线节点能够抵御干扰并消耗更低的功耗。预计通过利用其新的磁敏行为来实现大调谐范围,pRAM 可能会实现这一目标。为新型芯片级磁力计铺平了道路,实现了低检测限,可满足关键生物磁和环境应用的挑战性需求,但不需要偏置或冷却。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Frequency Reprogrammable Al 0.7 Sc 0.3 N Acoustic Delay Line with up to 13.5 % Bandwidth
频率%20可重编程%20Al%200.7%20Sc%200.3%20N%20声学%20延迟%20线路%20with%20up%20to%2013.5%20%%20带宽
- DOI:10.1109/eftf/ifcs54560.2022.9850681
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kaya, Onurcan;Zhao, Xuanyi;Cassella, Cristian
- 通讯作者:Cassella, Cristian
An Aluminum Scandium Nitride (Al 0.64 Sc 0.36 N) Two-Dimensional-Resonant-Rods Delay Line with 7.5% Bandwidth and 1.8 dB Loss
An%20铝%20钪%20氮化物%20(Al%200.64%20Sc%200.36%20N)%20二维谐振棒%20延迟%20线%20和%207.5%%20带宽%20和%201.8%20dB%20损耗
- DOI:10.1109/mems51670.2022.9699475
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kaya, Onurcan;Zhao, Xuanyi;Cassella, Cristian
- 通讯作者:Cassella, Cristian
An Ultra-Low Impedance 4.8 GHz Al 72 Sc 28 N Resonant Rods Resonator With a Record k t 2 of 21.2%
An%20超低%20阻抗%204.8%20GHz%20Al%2072%20Sc%2028%20N%20谐振%20Rods%20Resonator%20With%20a%20Record%20k%20t%202%20of%2021.2%
- DOI:10.1109/imfw49589.2021.9642286
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhao, Xuanyi;Kaya, Onurcan;Pirro, Michele;Michetti, Giuseppe;Colombo, Luca;Cassella, Cristian
- 通讯作者:Cassella, Cristian
Improving Thermal Linearity and Quality Factor of Al 72 Sc 28 N Contour Mode Resonators Using Acoustic Metamaterials based Lateral Anchors
使用基于声学超材料的横向锚改善 Al 72 Sc 28 N 轮廓模式谐振器的热线性度和品质因数
- DOI:10.1109/eftf/ifcs54560.2022.9850683
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhao, Xuanyi;Kaya, Onurcan;Pirro, Michele;Kang, Sungho;Cassella, Cristian
- 通讯作者:Cassella, Cristian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cristian Cassella其他文献
Cristian Cassella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cristian Cassella', 18)}}的其他基金
Collaborative Research: FET: Small: Massive Scale Computing and Optimization through On-chip ParameTric Ising MAchines (OPTIMA)
合作研究:FET:小型:通过片上 ParameTric Ising 机器进行大规模计算和优化 (OPTIMA)
- 批准号:
2103351 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Fully Integrated Parametric Filters for Extensive Phase-Noise Reduction in Low-Power RF Front-Ends and Resonant Sensing Platforms
全集成参数滤波器可在低功耗射频前端和谐振传感平台中广泛降低相位噪声
- 批准号:
1854573 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于白色瘤胃球菌的母婴对话在妊娠期糖尿病巨大儿脂肪积聚中的改善作用
- 批准号:82371697
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
巨大芽孢杆菌NCT-2菌剂对次生盐渍化土壤养分的改良机理研究
- 批准号:32301425
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内生巨大芽孢杆菌B6促进Pb在杞柳根-茎转运的作用机制
- 批准号:32301550
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
根际巨大普里斯特氏菌多肽调控的水稻抗盐促生生理代谢级联机制研究
- 批准号:32371571
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
巨大芽孢杆菌强化青葙修复镉污染土壤的根际效应与机理
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
粒径・形状によって巨大構造が現れる粉体の粘弾性評価:手法開発から物理的解釈まで
根据颗粒尺寸和形状出现巨型结构的粉末的粘弹性评估:从方法开发到物理解释
- 批准号:
24KJ0156 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for JSPS Fellows
有機固体に特異的に発現する巨大ゼーベック効果の制御とフレキシブル熱電素子への応用
有机固体中特有的巨大塞贝克效应的控制及其在柔性热电元件中的应用
- 批准号:
23K21140 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
特殊な構造を持つ一次元大規模相互作用系における巨視的挙動の研究
一维大尺度特殊结构相互作用系统的宏观行为研究
- 批准号:
24KJ1037 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for JSPS Fellows
高精度一般相対論的輻射輸送で探る超巨大ブラックホールの時空構造と起源
利用高精度广义相对论辐射传输探索超大质量黑洞的时空结构和起源
- 批准号:
23K20869 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Advancing Understanding of Super-Coarse and Giant Dust Particles via Novel Measurements of Emission and Transport
通过新颖的排放和传输测量方法增进对超粗和巨型灰尘颗粒的了解
- 批准号:
2336111 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant