Fully Integrated Parametric Filters for Extensive Phase-Noise Reduction in Low-Power RF Front-Ends and Resonant Sensing Platforms

全集成参数滤波器可在低功耗射频前端和谐振传感平台中广泛降低相位噪声

基本信息

  • 批准号:
    1854573
  • 负责人:
  • 金额:
    $ 43.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Numerous handheld medical devices and other consumer products rely on homodyne or super-heterodyne receivers for wireless connectivity. The maximum data rate achievable by such wireless nodes depends heavily on the frequency stability of the internal oscillators that generate the reference signals for the frequency conversion stages. Furthermore, significant research efforts have been directed towards the development of integrated closed-loop resonant sensing platforms, which rely on reliable oscillators to track the resonance frequency shifts induced in low-power micro and nano mechanical structures upon exposure to targeted physical or chemical signals. While such miniaturized resonant sensors have the potential to achieve unprecedented sensitivities, their detection capability is strongly limited by the stability of the oscillator employed as frequency readout. This research program aims to develop new techniques to achieve an unprecedented level of frequency stability in low-power and high-frequency integrated oscillators, addressing one of the most critical challenges that is currently limiting the performance of RF receivers and resonant sensing platforms. In particular, the proposed research entails the development of a new class of integrated solid-state low-power stabilization circuits, referred to as parametric filters. These integrated circuits exploit the complex nonlinear dynamics of parametric systems to implement the unique functionality of a filter for the phase noise reduction. By increasing the stability of frequency sources, the proposed parametric filter will allow to reduce the power consumption of battery-operated wireless sensor nodes deployed for Internet-of-Things (IoT) applications. In addition, the drastic phase noise reduction in the frequency readout of resonant sensing platforms will allow to surpass the resolution limits of state-of-the-art resonant sensors, leading to unprecedented detection capabilities. A parametric filter consists of a non-autonomous feedback network that includes a passive parametric frequency divider. When a parametric filter is designed to operate in proximity to a point of marginal stability for the parametric frequency divider, it exhibits an increase in relaxation time that renders it immune to the rapid phase fluctuations of its driving signal. As a result, the output signal of parametric filters exhibit orders of magnitude lower phase noise than their input signals. An aim of this project is to develop novel integrated parametric filters that can be connected at the output of gigahertz frequency generators. To demonstrate this concept, a 2.4 GHz frequency generator and the auxiliary circuits will be designed with an overall power consumption less than 0.6 mW. Phase noise improvements exceeding 30 dB at 1 MHz offset from the 2.4 GHz carrier are expected through the use of the new parametric filter architecture. Furthermore, a fundamental goal of this research is to develop a systematic design and simulation approach that allows to manipulate the stability of integrated passive parametric circuits. In particular, the efforts to develop parametric filters for low-power phase-noise reduction will provide means to understand the behavior of parametrically driven circuit components and their capability to manipulate the dynamics of non-autonomous feedback networks. In addition, the project will use commercial circuit simulators to capture such complex dynamics, which will greatly benefit circuit designers in the research community and industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多手持式医疗设备和其他消费产品依靠零差或超外差接收器进行无线连接。这种无线节点可实现的最大数据速率在很大程度上取决于为频率转换级生成参考信号的内部振荡器的频率稳定性。此外,大量的研究工作致力于开发集成闭环谐振传感平台,该平台依靠可靠的振荡器来跟踪低功率微米和纳米机械结构在暴露于目标物理或化学信号时引起的谐振频移。虽然这种小型化谐振传感器有可能实现前所未有的灵敏度,但它们的检测能力受到用作频率读出的振荡器的稳定性的强烈限制。该研究计划旨在开发新技术,以在低功耗和高频集成振荡器中实现前所未有的频率稳定性水平,解决目前限制射频接收器和谐振传感平台性能的最关键挑战之一。特别是,拟议的研究需要开发一种新型集成固态低功耗稳定电路,称为参数滤波器。这些集成电路利用参数系统的复杂非线性动力学来实现滤波器的独特功能,以降低相位噪声。通过提高频率源的稳定性,所提出的参数滤波器将能够降低为物联网(IoT)应用部署的电池供电无线传感器节点的功耗。此外,谐振传感平台频率读出的相位噪声大幅降低,将超越最先进的谐振传感器的分辨率极限,从而实现前所未有的检测能力。参数滤波器由非自主反馈网络组成,其中包括无源参数分频器。当参数滤波器被设计为在参数分频器的边缘稳定点附近工作时,它会表现出弛豫时间的增加,从而使其免受驱动信号快速相位波动的影响。因此,参数滤波器的输出信号的相位噪声比其输入信号低几个数量级。该项目的目标是开发新型集成参数滤波器,可以连接到千兆赫频率发生器的输出。为了演示这一概念,2.4 GHz 频率发生器和辅助电路的设计总功耗低于 0.6 mW。通过使用新的参数滤波器架构,预计在 2.4 GHz 载波偏移 1 MHz 时相位噪声将改善超过 30 dB。此外,这项研究的一个基本目标是开发一种系统设计和仿真方法,可以控制集成无源参数电路的稳定性。特别是,开发用于低功耗相位噪声降低的参数滤波器的努力将提供了解参数驱动电路组件的行为及其操纵非自主反馈网络动态的能力的方法。此外,该项目将使用商业电路模拟器来捕捉如此复杂的动态,这将大大有利于研究界和工业界的电路设计人员。该奖项反映了 NSF 的法定使命,并通过利用基金会的智力优势和能力进行评估,认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Giant Sensitivity through Fully-Passive and Chip-Less Parametric Temperature Sensors
  • DOI:
    10.1109/sensors47125.2020.9278907
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hussein M. E. Hussein-Hussein-M.-E.-Hussein-144402973;C. Cassella
  • 通讯作者:
    Hussein M. E. Hussein-Hussein-M.-E.-Hussein-144402973;C. Cassella
Capturing and recording cold chain temperature violations through parametric alarm-sensor tags
通过参数报警传感器标签捕获和记录冷链温度违规行为
  • DOI:
    10.1063/5.0054022
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Hussein, Hussein M.;Rinaldi, Matteo;Onabajo, Marvin;Cassella, Cristian
  • 通讯作者:
    Cassella, Cristian
Systematic Synthesis and Design of Ultralow Threshold 2:1 Parametric Frequency Dividers
超低阈值2:1参数分频器的系统综合与设计
  • DOI:
    10.1109/tmtt.2020.2999790
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Hussein, Hussein M.;Ibrahim, Mahmoud A.;Michetti, Giuseppe;Rinaldi, Matteo;Onabajo, Marvin;Cassella, Cristian
  • 通讯作者:
    Cassella, Cristian
Reflective Parametric Frequency-Selective Limiters With Sub-dB Loss and μWatts Power Thresholds
具有亚 dB 损耗和 μW 功率阈值的反射式参数频率选择限制器
  • DOI:
    10.1109/tmtt.2021.3072587
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Hussein, Hussein M.;Ibrahim, Mahmoud A.;Rinaldi, Matteo;Onabajo, Marvin;Cassella, Cristian
  • 通讯作者:
    Cassella, Cristian
Design and Analysis of an On-Chip Current-Driven CMOS Parametric Frequency Divider
  • DOI:
    10.1109/tcsi.2023.3249051
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mengting Yan;Hussein M. E. Hussein-Hussein-M.-E.-Hussein-144402973;C. Cassella;M. Rinaldi;M. Onabajo
  • 通讯作者:
    Mengting Yan;Hussein M. E. Hussein-Hussein-M.-E.-Hussein-144402973;C. Cassella;M. Rinaldi;M. Onabajo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cristian Cassella其他文献

Cristian Cassella的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cristian Cassella', 18)}}的其他基金

Collaborative Research: FET: Small: Massive Scale Computing and Optimization through On-chip ParameTric Ising MAchines (OPTIMA)
合作研究:FET:小型:通过片上 ParameTric Ising 机器进行大规模计算和优化 (OPTIMA)
  • 批准号:
    2103351
  • 财政年份:
    2021
  • 资助金额:
    $ 43.69万
  • 项目类别:
    Standard Grant
CAREER: Giant Tunability through Piezoelectric Resonant Acoustic Metamaterials for Radio Frequency Adaptive Integrated Electronics
职业:通过压电谐振声学超材料实现射频自适应集成电子器件的巨大可调性
  • 批准号:
    2034948
  • 财政年份:
    2021
  • 资助金额:
    $ 43.69万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于机器学习和影像学多参数融合的心血管不良事件风险预测模型研究
  • 批准号:
    82370513
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
融合地质图谱和钻进参数的长隧道断层破碎带识别与预警
  • 批准号:
    52308388
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多源大数据协同融合的图结构模型水质参数反演研究
  • 批准号:
    42301529
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合电能同质与资源异质特性的能源市场参数化定价理论研究
  • 批准号:
    52377105
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于铀裂变瞬发中子时间谱的地层"三度"参数融合校正方法研究
  • 批准号:
    12365026
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Tellurite Glass Microlasers and Parametric Oscillators Integrated on Silicon
硅上集成的亚碲酸盐玻璃微型激光器和参量振荡器
  • 批准号:
    552533-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 43.69万
  • 项目类别:
    University Undergraduate Student Research Awards
Improved Radiation Therapy of Hypoxic Tumor Regions by Integrated PET, EPR, and MR Imaging - Resubmission 01
通过集成 PET、EPR 和 MR 成像改进缺氧肿瘤区域的放射治疗 - 重新提交 01
  • 批准号:
    9897365
  • 财政年份:
    2020
  • 资助金额:
    $ 43.69万
  • 项目类别:
A preclinical integrated PET/EPR imaging system
临床前集成 PET/EPR 成像系统
  • 批准号:
    10032946
  • 财政年份:
    2020
  • 资助金额:
    $ 43.69万
  • 项目类别:
Exosome-based Non-traditional Technologies Towards Multi-Parametric and Integrated Approaches for SARS-CoV-2
基于外泌体的非传统技术针对 SARS-CoV-2 的多参数和综合方法
  • 批准号:
    10320984
  • 财政年份:
    2020
  • 资助金额:
    $ 43.69万
  • 项目类别:
A preclinical integrated PET/EPR imaging system
临床前集成 PET/EPR 成像系统
  • 批准号:
    10394307
  • 财政年份:
    2020
  • 资助金额:
    $ 43.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了