RAPID: Characterization of the shear stress enhanced electric field gradients in MOF/Polymers composite thin films and multilayered fibers.
RAPID:MOF/聚合物复合薄膜和多层纤维中剪切应力增强电场梯度的表征。
基本信息
- 批准号:2034643
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Summary: This RAPID project, supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, is focused on fundamental investigations, aimed at advancing our knowledge about materials with nanoscale-level filtration capabilities that have possible applications in the development of longer lasting respirators with increased ease-of-wear. This type of research has become necessary due to the current coronavirus (COVID-19) pandemic, of which the loss of lives, reduced financial livelihoods and reduced quality of lives are just a few of the already manifested consequences. In order to regain safe living and working environments, one of the main things needed is personal protective equipment such as facemasks and respirators. Unfortunately, there are worldwide shortages which have resulted in excessive reuse of these protective equipment, oftentimes to the detriment of not only the wearer, but others. Additionally, respirators are also uncomfortable to wear for most people, due to the inherent large pressure gradients and relatively low water vapor transmission. This project provides researchers in academia and industries involved in the development and application of filtration media with specific tuning procedures, which will in turn advance the welfare of society through improvements in our health, living and environmental conditions. Beyond personal protective equipment, the benefits of better nanoscale filtration media also extend to applications including water membrane treatments, nanoreactors, and chemical catalysis. The project involves the participation of students from various socioeconomic and education levels, and because of its interdisciplinary nature, they gain the knowledge and research experience involving aspects of chemistry, engineering, physics and material science. Technical Summary: With support from the Solid State and Materials Chemistry Program in the Division of Materials Research, this RAPID research project focuses on fundamentally characterizing the variable shear stress enhanced local electric field gradients in composite polymers/metal organic frameworks (MOFs) thin films, and multilayered electrospun fibrous materials. The principal investigator and her research group study whether materials that have greater electric fields gradients (EFGs) exhibit superior filtration/adsorption properties. Generally, the filtration properties of composite polymers can be tuned by modification of their surface morphology (diameter, surface roughness, etc.) and one way to accomplish this is by the incorporation of MOFs. To further increase nano-filtration properties, the electrostatic characteristics must be enhanced, and this project accomplishes this by the directional alignment and enhancement of the local electric field gradients using variable sheer stresses. Multinuclear (1H, 2H, and 17O) Magnetic Resonance (NMR) and Scanning Electron Microscopy (SEM) provide information about the local interactions between the various polymers, as well as between the MOFs and the polymers. Information about the electric field gradients is accessed through the quadrupole 2H and 17O nuclei and their magnitudes correlated with the degree of shear stress applied. Polymer type, crystallinity and morphology are also investigated, along with different MOF types and content as well as the order of layering used to construct the multilayered fibrous composites.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:在材料研究部的固态和材料化学计划的支持下,这个快速的项目侧重于基本调查,旨在促进我们对具有纳米级过滤能力的材料的知识,这些能力在较长的持久呼吸器开发方面可能应用,以增强耐磨的舒适性。由于目前的冠状病毒(Covid-19)大流行,这种研究变得有必要,其中丧生,减少金融生计和降低的生活质量只是已经显现出的后果。为了恢复安全的生活和工作环境,所需的主要事情之一是个人防护设备,例如面罩和呼吸器。不幸的是,在世界范围内有一些短缺导致这些防护设备过度重复使用,这通常不仅损害了佩戴者,而且损害了其他人。此外,由于固有的较大压力梯度和相对较低的水蒸气传播,呼吸器对大多数人来说也不舒服。该项目为参与过滤媒体开发和应用的学术界和行业的研究人员提供了特定的调整程序,这反过来又通过改善我们的健康,生活和环境状况来推动社会的福利。除了个人防护设备外,更好的纳米级过滤介质的好处还扩展到包括水膜治疗,纳米反应器和化学催化的应用。该项目涉及来自各种社会经济和教育水平的学生的参与,并且由于其跨学科性质,他们获得了涉及化学,工程,物理和材料科学方面的知识和研究经验。 技术摘要:在材料研究部的固态和材料化学计划的支持下,该快速研究项目的重点是从根本上表征可变的剪切应力增强了复合聚合物/金属有机框架(MOFS)薄膜中的局部电场梯度,以及多层的静电弹纤维材料。首席研究员及其研究小组研究具有更大电场梯度(EFG)的材料是否具有出色的过滤/吸附特性。通常,可以通过修饰其表面形态(直径,表面粗糙度等)来调节复合聚合物的过滤特性,而实现此目的的一种方法是通过掺入MOF。为了进一步提高纳米过滤特性,必须增强静电特性,并且该项目通过使用可变的纯应力来实现局部电场梯度的定向对齐和增强。多核(1H,2H和17O)磁共振(NMR)和扫描电子显微镜(SEM)提供了有关各种聚合物之间以及MOF和聚合物之间局部相互作用的信息。有关电场梯度的信息将通过四极杆2H和17O核访问,其大小与施加的剪切应力程度相关。还研究了聚合物类型,结晶度和形态,以及不同的MOF类型和内容,以及用于构建多层纤维复合物的分层顺序。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sophia Suarez其他文献
NMR investigation of proton transport in polybenzimidazole/polyphosphoric acid membranes prepared via novel synthesis route
- DOI:
10.1016/j.jpowsour.2023.233169 - 发表时间:
2023-08-15 - 期刊:
- 影响因子:
- 作者:
Mounesha N. Garaga;Laura Murdock;Tawhid Pranto;Sophia Suarez;Brian C. Benicewicz;Steven G. Greenbaum - 通讯作者:
Steven G. Greenbaum
Sophia Suarez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sophia Suarez', 18)}}的其他基金
EAGER: RUI: Elucidation of the AlCl4- and Al2Cl7- ions speciation, interactions and transport in electrolytes comprised of RTILs by Multi-Nuclear NMR techniques.
EAGER:RUI:通过多核 NMR 技术阐明由 RTIL 组成的电解质中 AlCl4- 和 Al2Cl7- 离子的形态、相互作用和传输。
- 批准号:
1841398 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
智慧城市导向下基于街景视觉表征的“人-环境”数字互联机制
- 批准号:52308015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轻量化多功能因瓦合金多孔材料增材制造与性能表征评价
- 批准号:12372133
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
空间包络误差表征下五轴机床装配精度衍生机理与层递调控机制
- 批准号:52365064
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于物理规律自适应表征的地震数据智能编码采集方法研究
- 批准号:42374222
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
ERI: Mechanical Characterization of the Interfascicular Matrix of Patellar Tendon in Shear and Transverse Tension
ERI:剪切和横向张力下髌腱束间基质的机械表征
- 批准号:
2347433 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Mechanical Characterization of Bio-Interfaces by Shear Wave Scattering
合作研究:通过剪切波散射对生物界面进行机械表征
- 批准号:
2225156 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
High Framerate Plane-Wave Variance of Acceleration and Vector Flow Imaging for the Characterization of Atherosclerotic Plaque Morphology and Assessment of Vascular Hemodynamics
高帧率平面波加速度方差和矢量流成像用于动脉粥样硬化斑块形态的表征和血管血流动力学的评估
- 批准号:
10461534 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
High Framerate Plane-Wave Variance of Acceleration and Vector Flow Imaging for the Characterization of Atherosclerotic Plaque Morphology and Assessment of Vascular Hemodynamics
高帧率平面波加速度方差和矢量流成像用于动脉粥样硬化斑块形态的表征和血管血流动力学的评估
- 批准号:
10700833 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
せん断波の可視化による超音波エラストグラフィーの臨床応用と新手法への展開
剪切波可视化超声弹性成像的临床应用及新方法的开发
- 批准号:
20K12675 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)