RAPID: Characterization of the shear stress enhanced electric field gradients in MOF/Polymers composite thin films and multilayered fibers.

RAPID:MOF/聚合物复合薄膜和多层纤维中剪切应力增强电场梯度的表征。

基本信息

  • 批准号:
    2034643
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical Summary: This RAPID project, supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, is focused on fundamental investigations, aimed at advancing our knowledge about materials with nanoscale-level filtration capabilities that have possible applications in the development of longer lasting respirators with increased ease-of-wear. This type of research has become necessary due to the current coronavirus (COVID-19) pandemic, of which the loss of lives, reduced financial livelihoods and reduced quality of lives are just a few of the already manifested consequences. In order to regain safe living and working environments, one of the main things needed is personal protective equipment such as facemasks and respirators. Unfortunately, there are worldwide shortages which have resulted in excessive reuse of these protective equipment, oftentimes to the detriment of not only the wearer, but others. Additionally, respirators are also uncomfortable to wear for most people, due to the inherent large pressure gradients and relatively low water vapor transmission. This project provides researchers in academia and industries involved in the development and application of filtration media with specific tuning procedures, which will in turn advance the welfare of society through improvements in our health, living and environmental conditions. Beyond personal protective equipment, the benefits of better nanoscale filtration media also extend to applications including water membrane treatments, nanoreactors, and chemical catalysis. The project involves the participation of students from various socioeconomic and education levels, and because of its interdisciplinary nature, they gain the knowledge and research experience involving aspects of chemistry, engineering, physics and material science. Technical Summary: With support from the Solid State and Materials Chemistry Program in the Division of Materials Research, this RAPID research project focuses on fundamentally characterizing the variable shear stress enhanced local electric field gradients in composite polymers/metal organic frameworks (MOFs) thin films, and multilayered electrospun fibrous materials. The principal investigator and her research group study whether materials that have greater electric fields gradients (EFGs) exhibit superior filtration/adsorption properties. Generally, the filtration properties of composite polymers can be tuned by modification of their surface morphology (diameter, surface roughness, etc.) and one way to accomplish this is by the incorporation of MOFs. To further increase nano-filtration properties, the electrostatic characteristics must be enhanced, and this project accomplishes this by the directional alignment and enhancement of the local electric field gradients using variable sheer stresses. Multinuclear (1H, 2H, and 17O) Magnetic Resonance (NMR) and Scanning Electron Microscopy (SEM) provide information about the local interactions between the various polymers, as well as between the MOFs and the polymers. Information about the electric field gradients is accessed through the quadrupole 2H and 17O nuclei and their magnitudes correlated with the degree of shear stress applied. Polymer type, crystallinity and morphology are also investigated, along with different MOF types and content as well as the order of layering used to construct the multilayered fibrous composites.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:这个 RAPID 项目得到了材料研究部固态和材料化学项目的支持,重点是基础研究,旨在增进我们对具有纳米级过滤能力的材料的了解,这些材料可能在以下领域得到应用:开发更耐用且更易于佩戴的呼吸器。由于当前的冠状病毒(COVID-19)大流行,此类研究变得必要,其中生命损失、经济生计减少和生活质量下降只是已经显现的后果中的一些。为了恢复安全的生活和工作环境,主要需要的东西之一是口罩和呼吸器等个人防护装备。不幸的是,全球范围内的短缺导致这些防护装备的过度重复使用,常常不仅损害佩戴者的利益,而且损害其他人的利益。此外,由于固有的大压力梯度和相对较低的水蒸气透过率,大多数人佩戴呼吸器也不舒服。该项目为学术界和工业界参与过滤介质开发和应用的研究人员提供了具体的调整程序,从而通过改善我们的健康、生活和环境条件来促进社会福利。除了个人防护设备之外,更好的纳米级过滤介质的好处还延伸到水膜处理、纳米反应器和化学催化等应用。该项目涉及来自不同社会经济和教育水平的学生的参与,由于其跨学科性质,他们获得了涉及化学、工程、物理和材料科学等方面的知识和研究经验。 技术摘要:在材料研究部固态和材料化学项目的支持下,该 RAPID 研究项目的重点是从根本上表征复合聚合物/金属有机框架 (MOF) 薄膜中可变剪切应力增强的局部电场梯度,和多层静电纺丝纤维材料。首席研究员和她的研究小组研究具有更大电场梯度(EFG)的材料是否表现出优异的过滤/吸附特性。一般来说,复合聚合物的过滤性能可以通过改变其表面形态(直径、表面粗糙度等)来调节,实现这一目标的一种方法是掺入 MOF。为了进一步提高纳滤性能,必须增强静电特性,该项目通过使用可变剪切应力定向排列和增强局部电场梯度来实现这一目标。多核(1H、2H 和 17O)磁共振 (NMR) 和扫描电子显微镜 (SEM) 提供有关各种聚合物之间以及 MOF 与聚合物之间局部相互作用的信息。通过四极 2H 和 17O 核获取有关电场梯度的信息,它们的大小与所施加的剪切应力的程度相关。还研究了聚合物类型、结晶度和形态,以及不同 MOF 类型和含量以及用于构造多层纤维复合材料的分层顺序。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sophia Suarez其他文献

Sophia Suarez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sophia Suarez', 18)}}的其他基金

EAGER: RUI: Elucidation of the AlCl4- and Al2Cl7- ions speciation, interactions and transport in electrolytes comprised of RTILs by Multi-Nuclear NMR techniques.
EAGER:RUI:通过多核 NMR 技术阐明由 RTIL 组成的电解质中 AlCl4- 和 Al2Cl7- 离子的形态、相互作用和传输。
  • 批准号:
    1841398
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于“经验-成分-智能感官-毒效表征”的蒙药诃子汤炮制草乌“稍有麻舌感”质量评价体系研究
  • 批准号:
    82360848
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
  • 批准号:
    32371262
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于单侧J-积分的FRP-混凝土界面疲劳裂纹扩展行为表征
  • 批准号:
    12302240
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于显微时序成像构建活细胞行为学表征系统,探究黄芪甲苷抑制肌成纤维细胞表型转化的动态机制
  • 批准号:
    82305051
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空间包络误差表征下五轴机床装配精度衍生机理与层递调控机制
  • 批准号:
    52365064
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

ERI: Mechanical Characterization of the Interfascicular Matrix of Patellar Tendon in Shear and Transverse Tension
ERI:剪切和横向张力下髌腱束间基质的机械表征
  • 批准号:
    2347433
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanical Characterization of Bio-Interfaces by Shear Wave Scattering
合作研究:通过剪切波散射对生物界面进行机械表征
  • 批准号:
    2225156
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
High Framerate Plane-Wave Variance of Acceleration and Vector Flow Imaging for the Characterization of Atherosclerotic Plaque Morphology and Assessment of Vascular Hemodynamics
高帧率平面波加速度方差和矢量流成像用于动脉粥样硬化斑块形态的表征和血管血流动力学的评估
  • 批准号:
    10461534
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
High Framerate Plane-Wave Variance of Acceleration and Vector Flow Imaging for the Characterization of Atherosclerotic Plaque Morphology and Assessment of Vascular Hemodynamics
高帧率平面波加速度方差和矢量流成像用于动脉粥样硬化斑块形态的表征和血管血流动力学的评估
  • 批准号:
    10700833
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
せん断波の可視化による超音波エラストグラフィーの臨床応用と新手法への展開
剪切波可视化超声弹性成像的临床应用及新方法的开发
  • 批准号:
    20K12675
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了