GOALI: Exploiting Charge Separation in Ice for Electrostatic De-Icing
目标:利用冰中的电荷分离进行静电除冰
基本信息
- 批准号:2034242
- 负责人:
- 金额:$ 53.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The accumulation of ice and frost on infrastructure and vehicles results in billions of dollars in economic losses annually in the United States. The use of heat and antifreeze chemicals to remove ice is costly and harmful to the environment, and mechanical de-icing is often impractical and can damage underlying surfaces. This GOALI project will develop a completely novel approach to de-icing that exploits the fact that ice can become spontaneously electrified. A combination of experimental measurements and numerical simulations will characterize the extent to which ice and frost can become electrified under various conditions. By placing charged electrodes over the ice, it can be forced to rapidly detach from an underlying surface by virtue of the resulting electrostatic force. This new technique of electrostatic de-icing will be examined for three different kinds of ice: planar ice sheets, dendritic frost sheets, and rime ice. The research team will collaborate with Rolls-Royce in applying electrostatic de-icing to aircraft to protect jet engines from harmful ice ingestion. The researchers will also create an exhibit for the Science Museum of Western Virginia that connects the concept of electrostatic de-icing to the electrification of clouds.There are two primary objectives to the project: gaining a comprehensive understanding of charge separation in ice and exploiting the effect to enable electrostatic de-icing. It is already known that the primary mechanism for charge separation in ice is the presence of a temperature differential, which causes the preferential migration of certain (naturally occurring) ionic defects over others. However, existing models of charge separation in ice apply only at steady-state, rely on several untested assumptions, lack controlled experimental or numerical validation, and are narrowly focused on the specific context of the electrification of clouds. In contrast, the project will utilize sophisticated numerical techniques in conjunction with advanced experimental characterization. The temperature gradient, environmental conditions, and geometric structure of the ice/frost will be widely varied to determine their effect on the extent of charge separation. Second, these findings will be exploited by maximizing the extent of charge separation in ice and applying an opposing charge to rapidly detach and remove the ice from its surface. This new de-icing construct, termed electrostatic de-icing, is unprecedented. In addition to enabling a practical and novel de-icing construct, the insights gained regarding charge separation in ice will lead to a better understanding of the electrification of clouds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
冰霜在基础设施和车辆上的积聚每年给美国造成数十亿美元的经济损失。 使用热量和防冻化学品来除冰成本高昂且对环境有害,而机械除冰通常不切实际,并且会损坏下面的表面。 该 GOALI 项目将开发一种全新的除冰方法,该方法利用冰可以自发带电的事实。 实验测量和数值模拟的结合将描述冰和霜在各种条件下带电的程度。 通过将带电电极放置在冰上,可以利用产生的静电力迫使冰快速从下面的表面分离。 这种静电除冰新技术将针对三种不同类型的冰进行检查:平面冰片、树枝状霜片和霜冰。 该研究团队将与劳斯莱斯合作,在飞机上应用静电除冰,以保护喷气发动机免受有害的冰摄入。 研究人员还将为西弗吉尼亚州科学博物馆创建一个展览,将静电除冰的概念与云带电联系起来。该项目有两个主要目标:全面了解冰中的电荷分离并利用作用以实现静电除冰。 众所周知,冰中电荷分离的主要机制是温差的存在,这导致某些(自然发生的)离子缺陷相对于其他离子缺陷优先迁移。 然而,现有的冰中电荷分离模型仅适用于稳态,依赖于几个未经测试的假设,缺乏受控实验或数值验证,并且狭隘地关注云带电的特定背景。相比之下,该项目将利用复杂的数值技术与先进的实验表征相结合。 温度梯度、环境条件和冰/霜的几何结构将有很大的变化,以确定它们对电荷分离程度的影响。 其次,这些发现将通过最大化冰中电荷分离的程度并应用相反的电荷来快速分离和去除冰从其表面上来利用。这种新的除冰结构被称为静电除冰,是前所未有的。 除了实现实用且新颖的除冰构造之外,获得的关于冰中电荷分离的见解将有助于更好地理解云的带电。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermoelectrics in ice slabs: charge dynamics and thermovoltages
冰板中的热电:电荷动力学和热电压
- DOI:10.1039/d1cp02304g
- 发表时间:2021
- 期刊:
- 影响因子:3.3
- 作者:Zhang, Hongwei;De Poorter, John;Mukherjee, Ranit;Boreyko, Jonathan B.;Qiao, Rui
- 通讯作者:Qiao, Rui
Electrostatic Jumping of Frost
- DOI:10.1021/acsnano.0c09153
- 发表时间:2021-02-24
- 期刊:
- 影响因子:17.1
- 作者:Mukherjee, Ranit;Ahmadi, S. Farzad;Boreyko, Jonathan B.
- 通讯作者:Boreyko, Jonathan B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Boreyko其他文献
Jonathan Boreyko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Boreyko', 18)}}的其他基金
CAREER: Synthetic Mangrove Trees for Passive Desalination and Water Harvesting
职业:用于被动海水淡化和集水的合成红树林
- 批准号:
1653631 - 财政年份:2017
- 资助金额:
$ 53.3万 - 项目类别:
Standard Grant
Exploiting Vapor Pressure Gradients to Suppress In-Plane Frost Growth
利用蒸气压梯度抑制面内霜生长
- 批准号:
1604272 - 财政年份:2016
- 资助金额:
$ 53.3万 - 项目类别:
Standard Grant
相似海外基金
Exploiting Pf phage superinfection to lower Pseudomonas aeruginosa virulence via evolutionary tradeoffs
利用 Pf 噬菌体重复感染通过进化权衡降低铜绿假单胞菌毒力
- 批准号:
10748681 - 财政年份:2023
- 资助金额:
$ 53.3万 - 项目类别:
CAS: Exploiting Spin in Photo-induced Chemistry: Fundamental Explorations of High-spin and Low-spin Transition Metals in Long-lived Charge Separated States and Oxidative Catalysis
CAS:利用光诱导化学中的自旋:长寿命电荷分离态和氧化催化中高自旋和低自旋过渡金属的基础探索
- 批准号:
2153862 - 财政年份:2022
- 资助金额:
$ 53.3万 - 项目类别:
Continuing Grant
Exploiting geometry-induced conjugation breaks to control charge transport through molecular junctions.
利用几何诱导的共轭断裂来控制通过分子连接的电荷传输。
- 批准号:
502379-2017 - 财政年份:2018
- 资助金额:
$ 53.3万 - 项目类别:
Postdoctoral Fellowships
Exploiting geometry-induced conjugation breaks to control charge transport through molecular junctions.
利用几何诱导的共轭断裂来控制通过分子连接的电荷传输。
- 批准号:
502379-2017 - 财政年份:2017
- 资助金额:
$ 53.3万 - 项目类别:
Postdoctoral Fellowships
Developing next generation multi junction solar absorbers exploiting THz probes of charge dynamics in quantum dots
利用量子点中电荷动力学的太赫兹探针开发下一代多结太阳能吸收器
- 批准号:
ST/L502558/1 - 财政年份:2013
- 资助金额:
$ 53.3万 - 项目类别:
Training Grant