Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems

合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗

基本信息

  • 批准号:
    2032077
  • 负责人:
  • 金额:
    $ 44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical and computational research with an aim to advance fundamental understanding of materials in which electrons interact strongly with each other. These materials exhibit unusual properties and phenomena which may lead to future device technologies. The PIs will use advanced computational approaches they have developed to perform computer simulations of electrons in this class of materials, and to explore the properties of a conceptually related system of strongly interacting particles - helium atoms at very low temperatures and modest pressure. The team will use simplified models to investigate how superconductivity can occur in materials with strongly interacting electrons. Superconductivity is a quantum state of matter where the electrons act in concert. A consequence is that electrons in a superconducting state can flow without resistance, unlike those in copper and the metals from which heating elements are made. The team will also investigate novel states of electrons that emerge due to their interaction with the vibrations of the crystalline lattice. The team will further pursue the consequences of interactions of strongly interacting electrons with crystalline lattice vibrations and investigate novel states that emerge when crystals are illuminated by light. Another focus of the project is helium, the second lightest element, which is in gas phase at room temperature. At extremely low temperatures helium becomes a liquid that can be thought of as a strongly interacting system of electrons, but without charge. At pressures above 25 times the atmospheric pressure, it becomes a crystalline solid and, like the liquid, displays intriguing properties consistent with the principles of quantum mechanics applied to systems of many interacting particles. At sufficiently low temperatures, liquid helium enters a state, called superfluidity, which is the analog of superconductivity. The team will explore striking properties of imperfect crystals of helium that arise as a consequence of quantum mechanics and the light mass of helium atoms. These include the frictionless transport of helium atoms through the solid and puzzling plastic phenomena observed in experiments for which no satisfactory theoretical explanations currently exist. The research team is well positioned to advance knowledge in these challenging problems of fundamental and technological interest, in part because the computational tools they have developed are well suited for the investigation of systems with strongly interacting particles, such as electrons in some classes of materials and helium atoms at extremely cold temperatures and modest pressures.This project also supports training graduate student and post-doctoral researchers in advanced numerical techniques, quantum statistics, topical problems of condensed-matter and atomic physics, and high-performance computing. This project also helps to advance the Precision Many Body Physics Initiative which is aimed to facilitate international collaboration in cutting edge research directed toward understanding collective properties of matter, including quantum matter. Activities planned within this context include: two major international workshops, Focused Sessions at American Physical Society March Meetings, and topical mini workshops at UMass Amherst.TECHNICAL SUMMARYThis award supports theoretical and computational research aimed at achieving a fundamental understanding of electronic and transport properties of a variety of condensed matter systems through the use of two state-of-the-art first-principles approaches to correlated quantum many-body systems: Worm Algorithm (WA) and Diagrammatic Monte Carlo (DiagMC); both introduced by the research team. The main goals of the project are: (i) DiagMC studies of Cooper instability in prototypical models of correlated electrons: systems with Coulomb and electron-phonon interactions and the repulsive Fermi-Hubbard model. (ii) DiagMC study of novel polaron states. (iii) WA-based study of disorder-induced quantum physics in solid He-4. (iv) WA-based study of novel exciton-photonic cooperative phases.This project also supports training graduate student and post-doctoral researchers in advanced numerical techniques, quantum statistics, topical problems of condensed-matter and atomic physics, and high-performance computing. This project also helps to advance the Precision Many Body Physics Initiative which is aimed to facilitate international collaboration in cutting edge research directed toward understanding collective properties of matter, including quantum matter. Activities planned within this context include: two major international workshops, Focused Sessions at American Physical Society March Meetings, and topical mini workshops at UMass Amherst.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一奖项支持理论和计算研究,旨在促进对电子相互互动的材料的基本理解。这些材料表现出异常的特性和现象,可能导致未来的设备技术。 PI将使用他们开发的先进计算方法来对这类材料进行计算机模拟,并探索与概念上相关的强烈相互作用颗粒的属性 - 温度非常低的氦原子和适度的压力。该团队将使用简化的模型来研究具有强烈相互作用电子的材料中如何发生超导性。超导性是电子演奏的量子状态。结果是,与铜和加热元件的金属不同,处于超导状态的电子可以在没有阻力的情况下流动。该团队还将研究由于与晶格的振动相互作用而出现的电子状态。该团队将进一步追求强烈相互作用电子与结晶晶格振动的相互作用的后果,并研究当晶体被光照亮时出现的新颖状态。该项目的另一个重点是氦气,这是第二轻元素,它在室温下处于气相。在极低的温度下,氦变成了一种液体,可以将其视为一种强烈相互作用的电子系统,但没有电荷。在高于大气压力的25倍以上的压力下,它变成了结晶固体,并且像液体一样,显示出与应用于许多相互作用颗粒系统的量子力学原理一致的有趣特性。在足够低的温度下,液态氦进入了一种称为超流量的状态,这是超导性的类似物。该团队将探索由于量子力学和氦原子的轻质质量而产生的不完善氦晶体的惊人特性。其中包括在实验中观察到的固体和令人困惑的塑料现象的无摩擦转运,该实验目前没有令人满意的理论解释。研究团队在这些基本和技术兴趣的具有挑战性的问题上的知识良好,部分是因为他们开发的计算工具非常适合对具有强烈相互作用颗粒的系统的调查,例如在某些类别的材料和氦气中的电子和氦气原子中的电子和氦气原子极为冷的压力和适度的压力。这些项目还支持培训的学生和统计研究生的数字研究,以下是多样性的数字研究。凝结物理和原子物理学以及高性能计算。该项目还有助于提高许多人体物理计划的精确性,旨在促进国际合作,以促进促进物质(包括量子问题)的尖端研究。在此背景下计划的活动包括:两个主要的国际研讨会,在美国物理社会举行的游行会议上的集中会议以及在UMass Amherst的局部小型研讨会。算法(WA)和图解蒙特卡洛(DIAGMC);两者都是由研究团队介绍的。该项目的主要目标是:(i)对相关电子原型模型中库珀不稳定性的DIAGMC研究:具有库仑和电子 - phonon相互作用的系统以及令人反感的费米 - 哈伯德模型。 (ii)新型极性状态的DIAGMC研究。 (iii)基于WA基于疾病诱导的固体HE-4量子物理学的研究。 (iv)基于WA的新型激子合作阶段的研究。该项目还支持培训高级数值技术的研究生和博士后研究人员,量子统计,凝结物理和原子质物理学的主题问题以及高性能计算。该项目还有助于提高许多人体物理计划的精确性,旨在促进国际合作,以促进促进物质(包括量子问题)的尖端研究。在此背景下计划的活动包括:两个主要的国际研讨会,在美国物理社会三月会议上的重点会议以及UMASS Amherst的主题迷你研讨会。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估来通过评估来支持的。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polaron with quadratic electron-phonon interaction
具有二次电子声子相互作用的极化子
  • DOI:
    10.1103/physrevb.107.l121109
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ragni, Stefano;Hahn, Thomas;Zhang, Zhongjin;Prokof'ev, Nikolay;Kuklov, Anatoly;Klimin, Serghei;Houtput, Matthew;Svistunov, Boris;Tempere, Jacques;Nagaosa, Naoto
  • 通讯作者:
    Nagaosa, Naoto
Peierls/Su-Schrieffer-Heeger polarons in two dimensions
Peierls/Su-Schrieffer-Heeger 二维极化子
  • DOI:
    10.1103/physrevb.104.035143
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhang, Chao;Prokof'ev, Nikolay V.;Svistunov, Boris V.
  • 通讯作者:
    Svistunov, Boris V.
Superconductivity in the uniform electron gas: Irrelevance of the Kohn-Luttinger mechanism
均匀电子气中的超导性:Kohn-Luttinger 机制的无关性
  • DOI:
    10.1103/physrevb.106.l220502
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Cai, Xiansheng;Wang, Tao;Prokof'ev, Nikolay V.;Svistunov, Boris V.;Chen, Kun
  • 通讯作者:
    Chen, Kun
Bond bipolarons: Sign-free Monte Carlo approach
键合双极子:无符号蒙特卡罗方法
  • DOI:
    10.1103/physrevb.105.l020501
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhang, Chao;Prokof'ev, Nikolay V.;Svistunov, Boris V.
  • 通讯作者:
    Svistunov, Boris V.
Superfluid Edge Dislocation: Transverse Quantum Fluid
超流体边缘位错:横向量子流体
  • DOI:
    10.1103/physrevlett.131.196001
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Radzihovsky, Leo;Kuklov, Anatoly;Prokof’ev, Nikolay;Svistunov, Boris
  • 通讯作者:
    Svistunov, Boris
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boris Svistunov其他文献

Boris Svistunov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boris Svistunov', 18)}}的其他基金

Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335904
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for strongly correlated condensed matter systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1720465
  • 财政年份:
    2017
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1314735
  • 财政年份:
    2013
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1005543
  • 财政年份:
    2010
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm algorithm and diagrammatic Monte Carlo in atomic and condensed matter physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    0653183
  • 财政年份:
    2007
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: ITR-(ASE)-(sim): Worm algorithm and diagrammatic Monte Carlo for strongly correlated atomic and condensed matter systems
合作研究:ITR-(ASE)-(sim):用于强相关原子和凝聚态物质系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    0426881
  • 财政年份:
    2004
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂介质中pH刺激响应型蠕虫状胶束体系构建及其机理研究
  • 批准号:
    52104035
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于蠕虫状聚合物纳米纤维的肿瘤疫苗高效级联递送系统研究
  • 批准号:
    82173771
  • 批准年份:
    2021
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
复杂介质中pH刺激响应型蠕虫状胶束体系构建及其机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于蠕虫状聚合物纳米纤维的肿瘤疫苗高效级联递送系统研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
面向高级持续性威胁的工业蠕虫隐匿传播理论与溯源研究
  • 批准号:
    61972452
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335904
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335905
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
  • 批准号:
    2218382
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
  • 批准号:
    2218119
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2032136
  • 财政年份:
    2020
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了