Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics

合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗

基本信息

  • 批准号:
    1314735
  • 负责人:
  • 金额:
    $ 87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

This project focuses on strongly correlated phases of cold-atomic systems in optical lattices where collective behavior is governed by laws of quantum mechanics. The prototypical strongly correlated fermionic systems -- the Hubbard model and resonant fermions in the regime of BCS-BEC crossover -- are central in the fields of the cold atom research and condensed matter. Understanding quantum plasticity and super transport in solid 4He remains one of big challenges in modern low-temperature physics. There is urgent need for universal unbiased first-principles methods for strongly correlated fermionic systems across all fields of physics, quantum chemistry, and materials science. Ab initio and model simulations provide crucial information about quantitative and qualitative properties of these systems, test analytical predictions and help establish the proper theoretical framework, lay the ground for the unambiguous analysis of experimental data and further development of measuring techniques. In particular, this project aims to (i) develop generic diagrammatic Monte Carlo (DiagMC) tools for continuous-space and lattice fermionic/fermionized systems: resonant fermions, Hubbard model, and frustrated spin systems, (ii) understand quantum plasticity and supertransport in solid helium-4, (iii) perform Worm Algorithm (WA) studies of quantum-critical phenomena and novel phases of ultra-cold atoms: deconfined criticality, universal critical dynamics, phases of multi-bound complexes of polar molecules.An unbiased theoretical description of collective quantum phenomena is of vital interdisciplinary importance for a number of applied and fundamental areas, such as quantum computing and high-energy physics. High-end computing methods and techniques often find applications outside the physics community. Simulations of complex models with multiple constraints, randomness, and a variable number of continuous parameters are typical in polymer science, neural networks, computer science, behavioral, social and economics studies. The algorithms developed in the project provide an example of how some of the difficulties may be circumvented. An integral part of the project is the training of graduate students and post-doctoral associate in advanced numeric techniques, quantum statistics, topical problems of atomic and solid state physics, network administration, and parallel supercomputing.
该项目重点研究光学晶格中冷原子系统的强相关相,其中集体行为受量子力学定律支配。典型的强相关费米子系统——BCS-BEC交叉体系中的哈伯德模型和共振费米子——是冷原子研究和凝聚态物质领域的核心。了解固体 4He 中的量子可塑性和超输运仍然是现代低温物理学的重大挑战之一。物理学、量子化学和材料科学所有领域迫切需要针对强相关费米子系统的通用无偏第一原理方法。从头算和模型模拟提供了有关这些系统的定量和定性特性的重要信息,测试分析预测并帮助建立适当的理论框架,为实验数据的明确分析和测量技术的进一步发展奠定基础。特别是,该项目旨在 (i) 开发用于连续空间和晶格费米子/费米子化系统的通用图解蒙特卡罗 (DiagMC) 工具:共振费米子、哈伯德模型和受挫自旋系统,(ii) 了解量子可塑性和超输运固体氦 4,(iii) 对超冷原子的量子临界现象和新相进行蠕虫算法 (WA) 研究:解除临界性、通用临界动力学、集体量子现象的公正的理论描述对于许多应用和基础领域(例如量子计算和高能物理)具有至关重要的跨学科重要性。高端计算方法和技术经常在物理界之外找到应用。具有多重约束、随机性和可变数量连续参数的复杂模型的模拟在聚合物科学、神经网络、计算机科学、行为、社会和经济学研究中很常见。该项目中开发的算法提供了如何规避一些困难的示例。该项目的一个组成部分是对研究生和博士后进行高级数值技术、量子统计、原子和固体物理热点问题、网络管理和并行超级计算方面的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boris Svistunov其他文献

Boris Svistunov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boris Svistunov', 18)}}的其他基金

Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335904
  • 财政年份:
    2024
  • 资助金额:
    $ 87万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2032077
  • 财政年份:
    2020
  • 资助金额:
    $ 87万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for strongly correlated condensed matter systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1720465
  • 财政年份:
    2017
  • 资助金额:
    $ 87万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1005543
  • 财政年份:
    2010
  • 资助金额:
    $ 87万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm algorithm and diagrammatic Monte Carlo in atomic and condensed matter physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    0653183
  • 财政年份:
    2007
  • 资助金额:
    $ 87万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: ITR-(ASE)-(sim): Worm algorithm and diagrammatic Monte Carlo for strongly correlated atomic and condensed matter systems
合作研究:ITR-(ASE)-(sim):用于强相关原子和凝聚态物质系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    0426881
  • 财政年份:
    2004
  • 资助金额:
    $ 87万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂介质中pH刺激响应型蠕虫状胶束体系构建及其机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于蠕虫状聚合物纳米纤维的肿瘤疫苗高效级联递送系统研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
面向高级持续性威胁的工业蠕虫隐匿传播理论与溯源研究
  • 批准号:
    61972452
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
旋毛虫免疫抑制分子——丝氨酸蛋白酶TspE1的酶学特性鉴定及其分子作用机制研究
  • 批准号:
    31902290
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
中国蠕虫病重要研究方向研讨会
  • 批准号:
    31972699
  • 批准年份:
    2019
  • 资助金额:
    13.2 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335904
  • 财政年份:
    2024
  • 资助金额:
    $ 87万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335905
  • 财政年份:
    2024
  • 资助金额:
    $ 87万
  • 项目类别:
    Continuing Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
  • 批准号:
    2218382
  • 财政年份:
    2022
  • 资助金额:
    $ 87万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
  • 批准号:
    2218119
  • 财政年份:
    2022
  • 资助金额:
    $ 87万
  • 项目类别:
    Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2032077
  • 财政年份:
    2020
  • 资助金额:
    $ 87万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了