RAPID: Smart Ventilation Control May Reduce Infection Risk for COVID-19 in Public Buildings

RAPID:智能通风控制可降低公共建筑中 COVID-19 的感染风险

基本信息

项目摘要

During the current COVID-19 pandemic, airborne transmission of the virus through exhaled aerosols is a likely explanation for the rapid rate of new infections. The risk of infection with COVID-19 could be reduced by employing feasible measures in public buildings, such as smart and enhanced Heating, Ventilation, and Air- conditioning (HVAC) design and operations, higher humidity levels, surface cleaning and hygiene protocols, revised spatial configuration, etc. This project aims to investigate a novel smart ventilation control strategy using a CO2-based indicator to operate under a normal mode and a pandemic mode as appropriate for common public buildings (e.g., office buildings, classroom buildings, retail stores). These buildings are designed and operated in normal conditions by default. The question to be studied is that, with the current HVAC equipment and systems already installed in existing public buildings, can operations be modified via smart ventilation control by diluting the air in a space with cleaner air from outdoors to reduce infection risk for occupants. Ventilation controls in public buildings under a pandemic represent significant challenges. In this project, the research team will look into the problem of potentially reducing infection risk with coronavirus through three objectives: 1) Obtain a minimum ventilation rate for different HVAC systems in most common public buildings to potentially reduce infection risk through a risk analysis with Computational Fluid Dynamics (CFD) simulations; 2) Establish a scientific correlation between CO2 concentration with the potential infection risk in spaces in public buildings to better monitor the infection risk with numerical studies and limited field experiments; and 3) Evaluate a novel smart ventilation control strategy that can switch between normal operation and operation under a pandemic through a co-simulation of energy performance and CFD simulations. COVID-19 has generated immense social-economic impact, which may be mitigated by the proposed smart ventilation control in public buildings to reduce the risk of being infected with COVID-19 during occupation of public buildingsThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在当前的 COVID-19 大流行期间,病毒通过呼出的气溶胶在空气中传播可能是新感染率快速上升的原因。 通过在公共建筑中采取可行的措施,例如智能和增强的供暖、通风和空调 (HVAC) 设计和操作、更高的湿度水平、修订后的表面清洁和卫生规程,可以降低感染 COVID-19 的风险该项目旨在研究一种新颖的智能通风控制策略,使用基于二氧化碳的指标在正常模式和大流行模式下运行,适用于常见的公共建筑(例如办公楼、教学楼、零售商店) 。这些建筑物默认在正常条件下设计和运行。要研究的问题是,在现有公共建筑已安装的暖通空调设备和系统的情况下,能否通过智能通风控制来修改操作,用室外更清洁的空气稀释空间内的空气,以降低居住者的感染风险。大流行期间公共建筑的通风控制面临着重大挑战。在这个项目中,研究团队将通过三个目标来研究潜在降低冠状病毒感染风险的问题:1)通过计算风险分析,获得最常见公共建筑中不同暖通空调系统的最低通风率,以潜在降低感染风险。流体动力学 (CFD) 模拟; 2)建立公共建筑空间CO2浓度与潜在感染风险之间的科学关联,通过数值研究和有限的现场实验更好地监测感染风险; 3) 评估一种新颖的智能通风控制策略,该策略可以通过能源性能和 CFD 模拟的联合仿真在正常运行和大流行情况下运行之间切换。 COVID-19 产生了巨大的社会经济影响,可以通过拟议的公共建筑智能通风控制来减轻这种影响,以减少公共建筑占用期间感染 COVID-19 的风险。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zheng O'Neill其他文献

Zheng O'Neill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zheng O'Neill', 18)}}的其他基金

PIRE: Building Decarbonization via AI-empowered District Heat Pump Systems
PIRE:通过人工智能支持的区域热泵系统实现脱碳
  • 批准号:
    2309030
  • 财政年份:
    2023
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Approach to Modeling, Decision-Making and Control for Energy Efficient Manufacturing
协作研究:节能制造建模、决策和控制的综合方法
  • 批准号:
    2243931
  • 财政年份:
    2023
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Standard Grant
PIRE: Building Decarbonization via AI-empowered District Heat Pump Systems
PIRE:通过人工智能支持的区域热泵系统实现脱碳
  • 批准号:
    2230748
  • 财政年份:
    2023
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Standard Grant
PFI-RP: Data-Driven Services for High Performance and Sustainable Buildings
PFI-RP:面向高性能和可持续建筑的数据驱动服务
  • 批准号:
    2050509
  • 财政年份:
    2020
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Standard Grant
Collaborative Research: AccelNet: An International Network of Networks for Well-being in the Built Environment (IN2WIBE)
合作研究:AccelNet:建筑环境福祉国际网络 (IN2WIBE)
  • 批准号:
    2009754
  • 财政年份:
    2019
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Standard Grant
Collaborative Research: AccelNet: An International Network of Networks for Well-being in the Built Environment (IN2WIBE)
合作研究:AccelNet:建筑环境福祉国际网络 (IN2WIBE)
  • 批准号:
    1931261
  • 财政年份:
    2019
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive, Multi-Layered Fenestration Elements for Optimum Building Energy Performance and Occupant Comfort
合作研究:自适应多层门窗元件,以实现最佳建筑能源性能和居住者舒适度
  • 批准号:
    2011296
  • 财政年份:
    2019
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive, Multi-Layered Fenestration Elements for Optimum Building Energy Performance and Occupant Comfort
合作研究:自适应多层门窗元件,以实现最佳建筑能源性能和居住者舒适度
  • 批准号:
    1760834
  • 财政年份:
    2018
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Standard Grant
PFI-RP: Data-Driven Services for High Performance and Sustainable Buildings
PFI-RP:面向高性能和可持续建筑的数据驱动服务
  • 批准号:
    1827757
  • 财政年份:
    2018
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Standard Grant

相似国自然基金

基于“活性-代谢组-基因组-SMART”整合策略发掘老鼠簕内生放线菌新型先导化合物
  • 批准号:
    82360696
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
大智慧还是小聪明?绩效压力对创造性绩效的双面效应机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    47 万元
  • 项目类别:
基于SMART设计建立中医药随机对照试验“随证施治”决策模型的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

'Smart Ventilation' - Novel Real-Time Biosensors and Artificial Intelligence for Optimized Mechanical Ventilation in Human Lungs
“智能通气”——新型实时生物传感器和人工智能,用于优化人肺机械通气
  • 批准号:
    489877
  • 财政年份:
    2023
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Operating Grants
Smart, wearable artificial lung system
智能、可穿戴式人工肺系统
  • 批准号:
    10558842
  • 财政年份:
    2023
  • 资助金额:
    $ 12.54万
  • 项目类别:
FEASible: Sensing Factors of Environment, Activity, and Sleep to Validate Metabolic Health Burden Among Latina Women
可行:通过环境、活动和睡眠的传感因素来验证拉丁裔女性的代谢健康负担
  • 批准号:
    10639447
  • 财政年份:
    2023
  • 资助金额:
    $ 12.54万
  • 项目类别:
A novel ventilation-pollution nexus framework for offsetting carbon by smart indoor spaces
一种通过智能室内空间抵消碳排放的新型通风-污染关系框架
  • 批准号:
    2841836
  • 财政年份:
    2023
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Studentship
Smart ventilated cage systems for next-level experimental design and monitoring of specialized animal models.
智能通风笼系统,用于下一级实验设计和专门动物模型的监测。
  • 批准号:
    10737361
  • 财政年份:
    2023
  • 资助金额:
    $ 12.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了