Rheo-Control 3D Printing: Tuning Suspension Viscosity for Fabricating Functional Materials with Gradient Properties
Rheo-Control 3D 打印:调节悬浮液粘度以制造具有梯度特性的功能材料
基本信息
- 批准号:2029454
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant supports research that will contribute new knowledge related to an additive manufacturing process, promoting both the progress of science and advancing national prosperity. Additive manufacturing, often called 3D printing, plays a pivotal role in the rapid design and fabrication of technological devices without the need for expensive tooling and long turnaround times. However, high-performance 3D printing of functional devices, such as energy-absorbing materials, wearable electronics, and morphing structures, remains a major challenge. Such limitations in performance are largely attributed to the difficulty in extruding highly functional inks and actively controlling their properties. This award supports fundamental research to provide knowledge for developing a 3D printing process that extrudes high-performance inks with tunable properties. The new printing technology will improve the performance of current 3D-printed devices and unlock new designs in material fabrication, bio-manufacturing, and customizable electronic production. Therefore, results from this research will greatly benefit the U.S. economy and society. This research involves multiple disciplines including fluid mechanics, microfabrication, and materials science. This transdisciplinary approach will help broaden participation of underrepresented groups in research and promote equity and inclusion in engineering education.Functional inks in 3D printing are often extremely viscous due to the required high filler content, and they often exhibit shear jamming that leads to catastrophic nozzle clogging. Moreover, the inability to alter ink properties, such as rigidity, conductivity, and thermal response, constrains manufacturing and thus inhibits the potential of realizing many new designs. To address such a challenge, this research will develop an understanding of and strategies for controlling functional ink properties via ultrasonic acoustic fields during extrusion. The hypothesis builds upon recent advances in thickening suspensions, in which high-frequency perturbations can be used to manipulate the microstructure of viscous fluids and substantially reduce their flow resistance. Specifically, this project will investigate the relationship between the mechanical properties of a particle-based model ink and the ink’s acoustically altered microstructure. The integration of these findings will lead to the development of design principles and perturbation protocols for building printing platforms. The project will explore two perturbation approaches: first, the simple attachment of a piezoelectric to a printing nozzle, and second, the engineering of an acoustic patterning device that precisely controls the ink microstructure. Collectively, these experiments will provide a foundation for developing active control of ink properties for printing functional devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项赠款支持将为与额外的制造过程相关的新知识的研究,从而促进科学的进步和推动国家繁荣。添加剂制造(通常称为3D打印)在技术设备的快速设计和结构中起着关键作用,而无需昂贵的工具和较长的周转时间。但是,功能设备的高性能3D打印,例如消耗材料,可穿戴电子设备和变形结构,仍然是一个重大挑战。性能的这种局限性在很大程度上归因于挤出高功能墨水和积极控制其性质的困难。该奖项支持基本研究,以提供开发3D打印过程的知识,该过程挤出具有可调属性的高性能墨水。新的印刷技术将改善当前3D打印设备的性能,并在材料制造,生物制造和可定制的电子生产中解锁新设计。因此,这项研究的结果将使美国经济和社会受益匪浅。这项研究涉及多个学科,包括流体力学,微结构和材料科学。这种跨学科的方法将有助于扩大代表性不足的群体在研究中的参与,并促进工程教育中的公平和包容性。由于所需的高填充物含量所需的高填充物,3D打印的功能性墨水通常非常粘,并且他们经常暴露于导致灾难性鼻子堵塞的剪切堵塞。此外,无法改变墨水性能,例如刚度,电导率和热响应,会限制制造,从而抑制实现许多新设计的潜力。为了应对这一挑战,这项研究将在扩展过程中通过超声声场来建立对控制功能墨水性能的理解和策略。该假设是基于最近增厚悬浮液的进展,其中高频扰动可用于操纵粘性烟道的微观结构并大大降低其流动阻力。具体而言,该项目将研究基于粒子模型墨水的机械性能与墨水的声学变化微观结构之间的关系。这些发现的集成将导致制定设计原理和用于构建印刷平台的扰动协议。该项目将探索两种扰动方法:首先,对打印喷嘴的压电的简单附件,其次,精确控制墨水微观结构的声学图案设备的工程。总的来说,这些实验将为建立对印刷功能设备的墨水属性的积极控制奠定基础。该奖项反映了NSF的法定任务,并被认为是使用基金会的知识分子优点和更广泛的影响审查标准的评估,认为这是珍贵的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supracellular Measurement of Spatially Varying Mechanical Heterogeneities in Live Monolayers.
- DOI:10.1016/j.bpj.2022.08.024
- 发表时间:2022-08
- 期刊:
- 影响因子:3.4
- 作者:Alexandra Bermudez;Zachary Gonzalez;Bao Zhao;Ethan Salter;Xuanqing Liu;Leixin Ma;M. Jawed;Cho-Jui Hsieh;Neil Y. C. Lin
- 通讯作者:Alexandra Bermudez;Zachary Gonzalez;Bao Zhao;Ethan Salter;Xuanqing Liu;Leixin Ma;M. Jawed;Cho-Jui Hsieh;Neil Y. C. Lin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Lin其他文献
Using Histologic Image Analysis to Understand Biophysical Regulations of Epithelial Cell Morphology
使用组织学图像分析了解上皮细胞形态的生物物理调控
- DOI:
10.35459/tbp.2023.000253 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alexandra Bermudez;Samanta Negrete Muñoz;Rita Blaik;Amy C. Rowat;Jimmy Hu;Neil Lin - 通讯作者:
Neil Lin
Teaching biophysics of epithelial cell morphology using commercial histological samples
- DOI:
10.1016/j.bpj.2023.11.1906 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Alexandra G. Bermudez;Samanta Negrete Munoz;Rita Blaik;Amy C. Rowat;Jimmy Hu;Neil Lin - 通讯作者:
Neil Lin
Nucleo-cytoskeletal coupling leads to anti-correlation between cytoplasmic and nuclear strains
- DOI:
10.1016/j.bpj.2023.11.884 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Jerry C. Chen;Iris Sloan;Alexandra G. Bermudez;Jimmy Hu;Neil Lin - 通讯作者:
Neil Lin
Cell crowding-induced geometric constraint regulates chromatin organizations
- DOI:
10.1016/j.bpj.2023.11.2493 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Alexandra G. Bermudez;Zoe Latham;Jimmy Hu;Neil Lin - 通讯作者:
Neil Lin
Neil Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Lin', 18)}}的其他基金
Robust and Generalizable AI Models for Label-free Cellular Organelle Identification
用于无标记细胞器识别的稳健且可推广的人工智能模型
- 批准号:
2325121 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
Deciphering the Drug Synergy in Pharmacological Rejuvenation of Mesenchymal Stromal Cells
解读间充质基质细胞药理再生中的药物协同作用
- 批准号:
2244760 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
相似国自然基金
3d金属薄膜材料的缺陷控制及其对非共线磁结构的影响机理研究
- 批准号:52371172
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
微纳3D打印磁悬浮微动工作台运动控制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
微纳3D打印磁悬浮微动工作台运动控制研究
- 批准号:52275569
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
Co包覆WC复合粉体的可控制备及其3D打印致密化机制研究
- 批准号:52204377
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Co包覆WC复合粉体的可控制备及其3D打印致密化机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Developing Ultrasound-Programmable 3D-Printed Biomaterials for Spatiotemporal Control of Gene Delivery
职业:开发用于基因传递时空控制的超声波可编程 3D 打印生物材料
- 批准号:
2339254 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track M: Biofilm-based Corrosion Control using 3D Printed Biotechnology
NSF 融合加速器轨道 M:使用 3D 打印生物技术进行基于生物膜的腐蚀控制
- 批准号:
2344389 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
3D genome organization of the Ets1-Fli1 locus controls allergic responses
Ets1-Fli1 基因座的 3D 基因组组织控制过敏反应
- 批准号:
10654172 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别: