Robots Teaching Robots: Real-time Optimal Control of Complex Engineering Systems
机器人教学机器人:复杂工程系统的实时优化控制
基本信息
- 批准号:2029181
- 负责人:
- 金额:$ 47.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project introduces learner-helper robot pairs to enable the learner robot to use physical experimentation to improve its performance on repetitive task, without accurate analytical or numerical models. The specific challenge is that these tasks -- for example walking on two legs or riding a bicycle -- require a minimal necessary level of performance, below which the robot is unable to function. In the examples, this minimal level of ability corresponds to not falling over. The helper satisfies these minimal requirements while the learner uses repeated trials to improve its performance. For example, the helper might suspend the two-legged walker from a traveling harness or move alongside the bicycle robot providing an additional point of support. As the learner-helper team masters the task, the amount of assistance that the helper can apply is gradually reduced, until the learner is performing at a high level on its own. An analogy is a child learning to ride a bike with the help of an adult moving alongside. The new control technique will enable robots to teach robots in training lines of future factories similar to robots currently used in assembly lines of manufacturing companies. Therefore, the results of this research will benefit the U.S. economy and society. This research also involves several disciplines including mechanical, electrical, computer, and control engineering. The multi-disciplinary approach is expected to broaden the participation of underrepresented groups in research and positively impact engineering education.Optimal control is a branch of control theory that has the potential to revolutionize the creation of intelligent engineering systems, industrial robots, surgical robots, and assistive robots that can improve by repeated experience, somewhat similar to humans. There are many optimal control techniques to control engineering systems. However, almost all currently available techniques require high-fidelity models or a large amount of measured data to mitigate the so-called simulation-reality gap; the gap between the optimal performance predicted by computer simulations and the non-optimal performance observed in real engineering applications. This award supports fundamental research to close the simulation-reality gap when optimal control is applied to engineering systems. Model-based optimal control techniques enable efficient computation but they are subject to conservative control performance. Data-driven optimal control techniques mitigate the detrimental effect of uncertain models, but to do so, they require a large amount of training data. Therefore, scientific barriers must be overcome to realize the full application potential of optimal control techniques. This research will address the knowledge gap that limits the potential and theoretical promise of optimal control theory when applied to complex engineering systems. The new technique promotes optimization of system performance via real-time experiments guided by dedicated teacher robots, instead of optimizing system performance guided only by uncertain model-based predictions and measured data. The technique delivers a transformative approach to control the class of complex, underactuated, and unstable robots, for which obtaining high-fidelity models is challenging, while gathering training data is time-consuming. The research outcomes could potentially provide mainstream paradigms in creating next-generation intelligent machines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目介绍了学习者助手机器人对,以使学习者机器人能够使用物理实验来提高其在重复任务上的性能,而无需准确的分析或数值模型。具体的挑战是,这些任务(例如在两条腿上行走或骑自行车)需要最低的必要水平,在此下面机器人无法运行。在示例中,这种最小的能力水平对应于没有掉下来。当学习者使用重复试验来提高其性能时,助手满足了这些最低要求。例如,助手可能会暂停两足的步行者从行进的安全带上悬挂,或者在自行车机器人旁边移动,从而提供额外的支撑点。随着学习者助手团队掌握任务,助手可以申请的帮助量逐渐减少,直到学习者独自一人表现出色为止。类比是一个孩子在成年人陪伴下学习骑自行车的孩子。新的控制技术将使机器人能够在未来工厂的培训行中教机器人,类似于当前在制造公司组装产品线中使用的机器人。因此,这项研究的结果将使美国经济和社会受益。这项研究还涉及几个学科,包括机械,电气,计算机和控制工程。预计多学科方法将扩大代表性不足的群体参与研究和积极影响工程教育。最佳控制是控制理论的一个分支,有可能彻底改变智能工程系统,工业机器人,外科机器人和辅助机器人的创建,并且可以通过反复的经验来改善与人类类似的经验,从而改善与人类相似的经验。控制工程系统有许多最佳控制技术。但是,几乎所有当前可用的技术都需要高保真模型或大量测量数据来减轻所谓的模拟现实差距。计算机模拟预测的最佳性能与在实际工程应用中观察到的非最佳性能之间的差距。当将最佳控制应用于工程系统时,该奖项支持基础研究,以缩小模拟现实差距。基于模型的最佳控制技术可实现有效的计算,但要受到保守的控制性能。数据驱动的最佳控制技术减轻了不确定模型的有害效果,但为此,它们需要大量的培训数据。因此,必须克服科学障碍,以实现最佳控制技术的全面应用潜力。这项研究将解决知识差距,该差距限制了应用于复杂工程系统的最佳控制理论的潜力和理论希望。新技术通过由专用教师机器人引导的实时实验促进了系统性能的优化,而不是仅通过不确定的基于模型的预测和测量数据来优化系统性能。该技术提供了一种转型方法来控制复杂,不足和不稳定的机器人的类别,为此,获得高保真模型的机器人是具有挑战性的,同时收集培训数据很耗时。研究成果有可能为创建下一代智能机器的主流范式提供主流范式。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Iterative Optimal Control for Switched Dynamical Systems
切换动力系统的数据驱动迭代最优控制
- DOI:10.1109/lra.2022.3226075
- 发表时间:2023
- 期刊:
- 影响因子:5.2
- 作者:Chen, Yuqing;Li, Yangzhi;Braun, David J.
- 通讯作者:Braun, David J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Braun其他文献
The vincamine derivative vindeburnol provides benefit in a mouse model of multiple sclerosis: effects on the Locus coeruleus
长春胺衍生物 Vindeburnol 对多发性硬化症小鼠模型有益:对蓝斑的影响
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:4.7
- 作者:
P. Polak;S. Kalinin;David Braun;A. Sharp;S. Lin;D. Feinstein - 通讯作者:
D. Feinstein
Persisting problems for a quantificational theory of complex demonstratives
复杂指示词量化理论中持续存在的问题
- DOI:
10.1007/s11098-008-9271-8 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
David Braun - 通讯作者:
David Braun
Breakthroughs in corporate nurturing strategies
- DOI:
10.1016/s0007-6813(05)80116-8 - 发表时间:
1993-07-01 - 期刊:
- 影响因子:
- 作者:
David Braun;Thomas Bertsch - 通讯作者:
Thomas Bertsch
An invariantist theory of ‘might’ might be right
“可能”的不变论可能是正确的
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
David Braun - 通讯作者:
David Braun
Contextualism about ‘might’ and says-that ascriptions
关于“可能”的语境主义并说归因
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
David Braun - 通讯作者:
David Braun
David Braun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Braun', 18)}}的其他基金
CAREER: Mechanically Adaptive, Energetically Passive Robotics
职业:机械自适应、能量被动机器人
- 批准号:
2144551 - 财政年份:2022
- 资助金额:
$ 47.99万 - 项目类别:
Standard Grant
Collaborative Research: Examining Pyrotechnology and Ecosystem Change in the Archaeological Record
合作研究:检查考古记录中的火工技术和生态系统变化
- 批准号:
2018896 - 财政年份:2020
- 资助金额:
$ 47.99万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Past and Present Human-Environment Dynamics
合作研究:REU 站点:过去和现在的人类环境动态
- 批准号:
1852441 - 财政年份:2019
- 资助金额:
$ 47.99万 - 项目类别:
Continuing Grant
Collaborative Research: Hominin diversity, paleobiology, and behavior at the terminal Pliocene
合作研究:上新世末期的古人类多样性、古生物学和行为
- 批准号:
1853355 - 财政年份:2019
- 资助金额:
$ 47.99万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Movement Ecology and Hominin Behavioral Evolution
博士论文研究:运动生态学与人类行为进化
- 批准号:
1747943 - 财政年份:2018
- 资助金额:
$ 47.99万 - 项目类别:
Standard Grant
Hominin footprints, fossils, and their context in the early Pleistocene of Koobi Fora, Kenya
肯尼亚库比福拉更新世早期的古人类足迹、化石及其背景
- 批准号:
1744150 - 财政年份:2017
- 资助金额:
$ 47.99万 - 项目类别:
Continuing Grant
Meeting: 58th Annual Maize Genetics Conference; Jacksonville, Florida; March 17-20, 2016
会议:第58届玉米遗传学年会;
- 批准号:
1608773 - 财政年份:2016
- 资助金额:
$ 47.99万 - 项目类别:
Standard Grant
Technological Origins: Environmental and Behavioral Context of the Earliest Tool Users
技术起源:最早的工具用户的环境和行为背景
- 批准号:
1624398 - 财政年份:2016
- 资助金额:
$ 47.99万 - 项目类别:
Standard Grant
Collaborative Research: Filling in a temporal gap in hominin evolution
合作研究:填补古人类进化的时间空白
- 批准号:
1460502 - 财政年份:2015
- 资助金额:
$ 47.99万 - 项目类别:
Standard Grant
U.S.-Kenya IRES: Origins of Human Adaptability
美国-肯尼亚 IRES:人类适应性的起源
- 批准号:
1358178 - 财政年份:2014
- 资助金额:
$ 47.99万 - 项目类别:
Standard Grant
相似国自然基金
基于课堂教学行为特征的教师信息技术应用能力智能评估方法研究
- 批准号:62377020
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向VR教学情景的学习投入度多模态测评方法研究
- 批准号:62307003
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于跨模态异构行为建模的教师教姿教态智能评测关键技术研究
- 批准号:62377031
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
多元情境下面向创新人才培养的课堂教学智能评价研究
- 批准号:62377014
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中学教师教学行为评价指标体系建构及优化途径研究
- 批准号:62307005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Extraction, Share and Use of Evidences from Real-world Educational Data
从现实世界的教育数据中提取、共享和使用证据的发展
- 批准号:
23H00505 - 财政年份:2023
- 资助金额:
$ 47.99万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of teaching materials on pneumatic control that can be remotely operated in real time
可远程实时操作的气动控制教材开发
- 批准号:
22K02852 - 财政年份:2022
- 资助金额:
$ 47.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Semi-Supervised Learning Method using Compressed Video for Real-Time Animal Behavior Analysis
使用压缩视频进行实时动物行为分析的半监督学习方法的开发
- 批准号:
22H03637 - 财政年份:2022
- 资助金额:
$ 47.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Study on Disaster Learning Methodologies with Focus on the Real and Virtual Environments of Places for Disaster Learning and Relationships among People
灾害学习方法论研究,重点关注灾害学习场所的真实和虚拟环境以及人与人之间的关系
- 批准号:
21K04614 - 财政年份:2021
- 资助金额:
$ 47.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inclusive participatory mapping combining real-world mobile collaborative learning and virtual mapping party
结合现实世界移动协作学习和虚拟测绘派对的包容性参与式测绘
- 批准号:
21H00915 - 财政年份:2021
- 资助金额:
$ 47.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)