Collaborative Research: PPoSS: Planning: Integrated Scalable Platform for Privacy-aware Collaborative Learning and Inference

协作研究:PPoSS:规划:用于隐私意识协作学习和推理的集成可扩展平台

基本信息

  • 批准号:
    2029004
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Building scalable distributed heterogeneous systems of the future with easy-to-program software is broadly acknowledged to be a grand challenge. It is widely recognized that a major disruption is currently under way in the design of computer systems as processors strive to extend, and go beyond, the end-game of Moore’s Law. This disruption is manifest in new forms of heterogeneous and distributed processors and memories at all scales (on-chip, on-die, on-node, on-rack, on-cluster, and on-data-center), rendering scalability as a fundamental challenge at all levels. Healthcare analytics offers a unique opportunity to explore scalable system design for the 21st century because there has been a tectonic shift in the ability of medical institutions to capture and store medical data, and to even stream data in real time. This shift has already contributed to an ecosystem of Machine Learning (ML) models being trained for a variety of clinical tasks. A new distributed heterogeneous architecture is required to build systems that can develop and deploy ML models based on distributed healthcare data that must necessarily be accessed with privacy-preserving constraints. Further, the proposed architecture must be accompanied by a software framework that can address the needs of domain-specific data scientists to develop and augment ML models being deployed in their hospitals.This planning grant project is exploring the foundational principles necessary in building integrated scalable distributed systems of the future, so as to prepare for submitting a full proposal to the PPoSS program. It uses the domain of healthcare analytics to motivate and concretize the research agenda, but the principles developed in this research should be applicable to other application domains as well. The exploration focuses on demonstrating an integrated platform that spans multiple levels of distribution and heterogeneity of computation and storage, while also obeying important privacy constraints. While recent progress on the use of ML in healthcare applications has been encouraging, current approaches do not a) scale to the degrees of parallelism, heterogeneity, and distribution that will be required in future systems, or b) support the soft real-time responsiveness to streaming data that is needed in many clinical situations. The originality of this project can be seen in the integration of distribution, heterogeneity, and privacy considerations in a single unified software/hardware stack, which includes adaptive resource management that spans privacy-preserving federated continuous learning, automatic specialization of ML models at individual sites, and automatic selection of ML models best suited for specific clinical tasks that maximize accuracy subject to different latency and soft real-time constraints.This project’s end-to-end approach to develop foundational scalability principles will impact multiple areas of computer science through publications, tutorials and courses, thereby benefiting other researchers working on scalability challenges in future distributed heterogeneous systems. The use of healthcare analytics as a driving application has the potential to result in significant benefits to society, by demonstrating how knowledge distilled from multiple sources of data can be embodied in recommendation systems that can run onsite to provide time-critical decision support to physicians. As a further impact, the project will contribute to the training of Highly Qualified Personnel (HQP) at the intersection of Systems for ML and ML for Healthcare — two emerging inter-disciplinary communities that are currently growing independent of each other. Finally, this research will leverage existing activities at the PIs’ institutions that contribute to broadening participation of underrepresented groups in computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们普遍认为,使用易于编程的软件构建未来的可扩展分布式异构系统是一项巨大的挑战,随着处理器努力扩展和运行,计算机系统的设计目前正在发生重大变革。超越摩尔定律的最终阶段,这种破坏体现在各种规模的新形式的异构和分布式处理器和存储器中(片上、芯片上、节点上、机架上、集群上和存储器上)。数据中心上),将可扩展性视为各个层面的基本挑战,医疗保健分析为探索 21 世纪的可扩展系统设计提供了独特的机会,因为医疗机构捕获和存储医疗数据的能力发生了结构性转变。这种转变已经促成了针对各种临床任务进行训练的机器学习(ML)模型生态系统,以构建可以开发和部署的系统。基于分布式的ML模型此外,所提出的架构必须附带一个软件框架,该框架可以满足特定领域的数据科学家开发和增强在医院中部署的机器学习模型的需求。资助项目正在探索构建未来集成可扩展分布式系统的基本必要原则,以便为向 PPoSS 计划提交完整提案做好准备。它使用医疗保健分析领域来激励和具体化研究议程,但原则。本研究中开发的应该适用探索的重点是展示一个跨越计算和存储的多个分布和异构性的集成平台,同时遵守重要的隐私限制,尽管最近在医疗保健应用中使用机器学习的进展令人鼓舞。当前的方法不能a)扩展到未来系统所需的并行性、异质性和分布程度,或b)支持许多临床情况所需的对流数据的软实时响应。项目可以在集成中看到在单个统一的软件/硬件堆栈中考虑分布、异构性和隐私考虑因素,其中包括跨隐私保护联合持续学习的自适应资源管理、各个站点的 ML 模型的自动专业化以及自动选择最适合特定情况的 ML 模型在不同的延迟和软实时约束下最大限度地提高准确性的临床任务。该项目开发基本可扩展性原则的端到端方法将通过出版物、教程和课程影响计算机科学的多个领域,从而使其他研究人员受益通过展示从多个数据源提取的知识如何体现在可以现场运行的推荐系统中,医疗保健分析作为驱动应用程序有可能为社会带来重大利益。作为进一步的影响,该项目将有助于在 ML 系统和医疗保健 ML 系统(两个目前正在独立发展的新兴跨学科社区)的交叉点培训高素质人员 (HQP)。最后,彼此。这项研究将利用 PI 机构的现有活动,有助于扩大代表性不足的群体在计算领域的参与。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
UnfoldML: Cost-Aware and Uncertainty-Based Dynamic 2D Prediction for Multi-Stage Classification
  • DOI:
    10.48550/arxiv.2210.15056
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanbo Xu;Alind Khare;G. Matlin;Monish Ramadoss;Rishikesan Kamaleswaran;Chao Zhang;Alexey Tumanov
  • 通讯作者:
    Yanbo Xu;Alind Khare;G. Matlin;Monish Ramadoss;Rishikesan Kamaleswaran;Chao Zhang;Alexey Tumanov
SHMEM-ML: Leveraging OpenSHMEM and Apache Arrow for Scalable, Composable Machine Learning
SHMEM-ML:利用 OpenSHMEM 和 Apache Arrow 实现可扩展、可组合的机器学习
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grossman, Max;Poole, Steve;Pritchard, Howard;Sarkar, Vivek
  • 通讯作者:
    Sarkar, Vivek
Enabling Real-time DNN Switching via Weight-Sharing
通过权重共享启用实时 DNN 切换
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vivek Sarkar其他文献

Transitive joins: a sound and efficient online deadlock-avoidance policy
传递连接:健全高效的在线避免死锁策略
Cost-driven thread coarsening for GPU kernels
GPU 内核的成本驱动线程粗化
Heterogeneous work-stealing across CPU and DSP cores
跨 CPU 和 DSP 内核的异构工作窃取
HabaneroUPC++: a Compiler-free PGAS Library
HabaneroUPC:无需编译器的 PGAS 库
Load Balancing Prioritized Tasks via Work-Stealing
通过工作窃取实现负载平衡优先任务

Vivek Sarkar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vivek Sarkar', 18)}}的其他基金

SPX: Collaborative Research: Scalable Heterogeneous Migrating Threads for Post-Moore Computing
SPX:协作研究:后摩尔计算的可扩展异构迁移线程
  • 批准号:
    1822919
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Parallel and Distributed Circuit Programming for Structured Prediction
XPS:完整:协作研究:用于结构化预测的并行和分布式电路编程
  • 批准号:
    1818643
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Parallel and Distributed Circuit Programming for Structured Prediction
XPS:完整:协作研究:用于结构化预测的并行和分布式电路编程
  • 批准号:
    1629459
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CCF: SHF: Medium: Collaborative: A Static and Dynamic Verification Framework for Parallel Programming
CCF:SHF:媒介:协作:并行编程的静态和动态验证框架
  • 批准号:
    1302570
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Travel Support for the Conference on Architectural Support for Programming Languages and Operating Systems
编程语言和操作系统架构支持会议的差旅支持
  • 批准号:
    1338429
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Chorus: Dynamic Isolation in Shared-Memory Parallelism
SHF:媒介:协作研究:Chorus:共享内存并行中的动态隔离
  • 批准号:
    0964520
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Programming Models and Storage System for High Performance Computation with Many-Core Processors
合作研究:众核处理器高性能计算的编程模型和存储系统
  • 批准号:
    0938018
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Programming Models, Compilers, and Runtimes for High-End Computing on Manycore Processors
协作研究:众核处理器上高端计算的编程模型、编译器和运行时
  • 批准号:
    0833166
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了