Collaborative Research: CNS Core: Small: Secure and Efficient Mobile Edge Computing in Wireless Heterogeneous Networks
合作研究: CNS 核心:小型:无线异构网络中安全高效的移动边缘计算
基本信息
- 批准号:2008145
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Future wireless networks will support massive energy-limited computation-constrained user equipment that are often required to execute latency sensitive yet computation-intensive tasks. Although technologies that can elevate local device computation capability and battery capacity have been substantially pushed forward, there still exists a huge gap between the high computation/processing demands and the low computation/battery capacities in user equipment. Mobile edge computing (MEC) allows user equipment to offload partial or complete computation-intensive tasks to the edge computing servers to save power and reduce latency. Inspired by recent advances in wireless technologies and challenges, the proposed research aims to explore a novel framework that can jointly consider communications and computations in a mobile edge computing-based wireless heterogeneous network to realize secure and efficient offloading and achieve desirable trade-offs among computation throughput, computation efficiency, latency, and user fairness. The proposed research activities have significant potentials to revolutionize the next generation wireless network design by jointly considering edge computations and communications in delivering secure, latency critical, computation-intensive applications such as augmented reality/virtual reality, connected and autonomous vehicle, and remote medical diagnosis. It can significantly facilitate the understanding in the field of emerging mobile edge networks, which will play a key role in the modem society to realize smart environments with computation intensive mobile applications. The proposed research framework develops secure multiple access schemes during offloading, computation coordination and scheduling schemes for selecting user equipment and computation tasks to offload. The research will identify unique technical challenges and explore many new aspects in the mobile edge computing enabled wireless heterogenous networks, including non-orthogonal multiple access, computing offloading mode selection, success interference cancellation decoding order design, hybrid multiple access analysis, and heterogeneous MEC coordination, driven by joint consideration on security, efficiency, and user fairness. The theoretical framework formulation and analysis, engineering design guidelines for practical implementation and deployment will be obtained, and prototyping/simulation tools will be shared with the scientific research and engineering communities. The success of this project can greatly advance the understanding of the critical issues in the mobile edge computing-based wireless network design and contribute a new resource allocation framework that can remarkably improve the performance of future wireless network computing. The project will also both undergraduate and graduate students research opportunities with developing and deploying new wireless network technologies, thus serving the growing need for educating and training students, especially female students and students from underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来的无线网络将支持大量能量有限、计算受限的用户设备,这些用户设备通常需要执行延迟敏感但计算密集型的任务。尽管能够提升本地设备计算能力和电池容量的技术已经得到了大幅推进,但用户设备的高计算/处理需求与低计算/电池容量之间仍然存在巨大差距。移动边缘计算(MEC)允许用户设备将部分或完整的计算密集型任务卸载到边缘计算服务器,以节省电量并减少延迟。受无线技术最新进展和挑战的启发,本研究旨在探索一种新颖的框架,可以在基于移动边缘计算的无线异构网络中共同考虑通信和计算,以实现安全高效的卸载,并在计算之间实现理想的权衡吞吐量、计算效率、延迟和用户公平性。 拟议的研究活动通过共同考虑边缘计算和通信来提供安全、延迟关键、计算密集型应用(例如增强现实/虚拟现实、联网和自动驾驶车辆以及远程医疗诊断),具有彻底改变下一代无线网络设计的巨大潜力。它可以极大地促进对新兴移动边缘网络领域的理解,这将在现代社会通过计算密集型移动应用程序实现智能环境中发挥关键作用。所提出的研究框架开发了卸载期间的安全多址方案、用于选择要卸载的用户设备和计算任务的计算协调和调度方案。该研究将确定独特的技术挑战,并探索移动边缘计算支持的无线异构网络的许多新方面,包括非正交多址、计算卸载模式选择、成功干扰消除解码顺序设计、混合多址分析和异构MEC协调,在安全、效率、用户公平的共同考虑驱动下。 将获得理论框架的制定和分析、实际实施和部署的工程设计指南,并将与科学研究和工程界共享原型/仿真工具。该项目的成功可以极大地促进对基于移动边缘计算的无线网络设计中关键问题的理解,并贡献一种新的资源分配框架,可以显着提高未来无线网络计算的性能。该项目还将为本科生和研究生提供开发和部署新无线网络技术的研究机会,从而满足对教育和培训学生日益增长的需求,特别是女学生和来自弱势群体的学生。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Privacy-preserving data deduplication in edge-assisted mobile crowdsensing
边缘辅助移动群智感知中的隐私保护重复数据删除
- DOI:10.1504/ijmis.2022.121283
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Jiang, Yili;Zhang, Kuan;Qian, Yi;Hu, Rose Qingyang
- 通讯作者:Hu, Rose Qingyang
Energy Efficient Robust Beamforming and Cooperative Jamming Design for IRS-Assisted MISO Networks
IRS 辅助 MISO 网络的节能鲁棒波束成形和协作干扰设计
- DOI:10.1109/twc.2020.3043325
- 发表时间:2021-04
- 期刊:
- 影响因子:10.4
- 作者:Wang, Qun;Zhou, Fuhui;Hu, Rose Qingyang;Qian, Yi
- 通讯作者:Qian, Yi
Cooperative Task Allocation in Edge Computing Assisted Vehicular Crowdsensing
边缘计算辅助车辆群智感知中的协作任务分配
- DOI:10.1109/globecom46510.2021.9685136
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Jiang, Yili;Zhang, Kuan;Qian, Yi;Hu, Rose Qingyang
- 通讯作者:Hu, Rose Qingyang
An Optimization Framework for Privacy-preserving Access Control in Cloud-Fog Computing Systems
云雾计算系统中隐私保护访问控制的优化框架
- DOI:10.1109/vtc2020-fall49728.2020.9348516
- 发表时间:2020-11-01
- 期刊:
- 影响因子:0
- 作者:Yili Jiang;Kuan Zhang;Y. Qian;Liang Zhou
- 通讯作者:Liang Zhou
Efficient and Privacy-preserving Distributed Learning in Cloud-Edge Computing Systems
云边缘计算系统中高效且保护隐私的分布式学习
- DOI:10.1145/3468218.3469044
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Jiang, Yili;Zhang, Kuan;Qian, Yi;Hu, Rose Qingyang
- 通讯作者:Hu, Rose Qingyang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Qian其他文献
Quantitative Analysis of Bolt Loosening Angle Based on Deep Learning
基于深度学习的螺栓松动角度定量分析
- DOI:
10.3390/buildings14010163 - 发表时间:
2024-01-09 - 期刊:
- 影响因子:3.8
- 作者:
Yi Qian;Chuyue Huang;Beilin Han;Fan Cheng;Shengqiang Qiu;Hongyang Deng;Xiang Duan;Hengbin Zheng;Zhiwei Liu;Jie Wu - 通讯作者:
Jie Wu
Improving user's Quality of Experience in imbalanced dataset
提高不平衡数据集中用户的体验质量
- DOI:
10.1109/iwcmc.2016.7577132 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:0
- 作者:
Ronghua Liu;Ruochen Huang;Yi Qian;Xin Wei;Ping Lu - 通讯作者:
Ping Lu
The Economic Effects of Counterfeiting and Piracy
假冒和盗版的经济影响
- DOI:
10.1596/1813-9450-7586 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:0
- 作者:
C. Fink;K. Maskus;Yi Qian - 通讯作者:
Yi Qian
Research Opportunities in Emerging Markets: an Inter-disciplinary Perspective from Marketing, Economics, and Psychology
新兴市场的研究机会:市场营销、经济学和心理学的跨学科视角
- DOI:
10.1007/s40547-015-0044-1 - 发表时间:
2015-03-28 - 期刊:
- 影响因子:0
- 作者:
K. Sudhir;Joseph R. Priester;M. Shum;D. Atkin;A. Foster;Ganesh Iyer;G. Jin;Daniel E. Keniston;S. Kitayama;Mushfiq Mobarak;Yi Qian;I. Tewari;Wendy Wood - 通讯作者:
Wendy Wood
Approximate Wireless Communication for Lossy Gradient Updates in IoT Federated Learning
物联网联邦学习中有损梯度更新的近似无线通信
- DOI:
10.48550/arxiv.2404.11035 - 发表时间:
2024-04-17 - 期刊:
- 影响因子:0
- 作者:
Xiang Ma;Haijian Sun;Rose Qingyang Hu;Yi Qian - 通讯作者:
Yi Qian
Yi Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Qian', 18)}}的其他基金
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
- 批准号:
2319486 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: Expedite CSI Processing with Lightweight AI in Massive MIMO Communication Systems
合作研究:在大规模 MIMO 通信系统中利用轻量级 AI 加速 CSI 处理
- 批准号:
2139520 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: EARS: Spectrum and Energy Efficient Radio Resource Access in Wireless Networks with Densely Deployed Underlay Devices
合作研究:EARS:具有密集部署的底层设备的无线网络中的频谱和节能无线电资源访问
- 批准号:
1547330 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Scalability and Reliability for Network Communication Infrastructure in Smart Grid
NeTS:小型:协作研究:智能电网中网络通信基础设施的可扩展性和可靠性
- 批准号:
1423408 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: C-HetNet - Towards Spectrum and Energy Efficient Next Generation Wireless Access Networks
合作研究:C-HetNet - 迈向频谱和能源高效的下一代无线接入网络
- 批准号:
1307580 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
NeTS: Medium: AC-MWN: A Novel Architecture for Application-Aware Cognitive Multihop Wireless Networks
NeTS:媒介:AC-MWN:应用感知认知多跳无线网络的新颖架构
- 批准号:
1065069 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
LncMOB3A-2编码多肽在肠外致病性大肠杆菌入侵中枢神经系统中的作用机制研究
- 批准号:32302954
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
S100A9作为万古霉素儿童中枢神经系统抗感染个体化治疗预测因子的机制研究和量效分析
- 批准号:82304631
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
失重效应影响中枢神经系统药物脑空间分布及药动学的机制和调控研究
- 批准号:82373939
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
染色质重塑因子CHD3调控中枢神经系统少突胶质细胞发育的机制研究
- 批准号:82301950
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人体镜像中枢神经系统和信任度的假肢互适应机制研究
- 批准号:62363006
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
- 批准号:
2229454 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Center of Biomedical Research Excellence in CNS Metabolism
中枢神经系统代谢生物医学卓越研究中心
- 批准号:
10557542 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant