Collaborative Research: RI: Small: Modeling and Learning Ethical Principles for Embedding into Group Decision Support Systems
协作研究:RI:小型:建模和学习嵌入群体决策支持系统的道德原则
基本信息
- 批准号:2007955
- 负责人:
- 金额:$ 16.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many settings in everyday life require making decisions by combining the subjective preferences of individuals in a group, such as where to go to eat, where to go on vacation, whom to hire, which ideas to fund, or what route to take. In many domains, these subjective preferences are combined with moral values, ethical principles, or business constraints that are applicable to the decision scenario and are often prioritized over the preferences. The potential conflict of moral values with subjective preferences are keenly felt both when AI systems recommend products to us and when we use AI enabled systems to make group decisions. This research seeks to make AI more accountable by providing mechanisms to bound the decisions that AI systems can make, ensuring that the outcomes of the group decision making process aligns with human values. To achieve the goal of building ethically-bounded, AI-enabled group decision making systems, this project takes inspiration from humans, who often constrain their decisions and actions according to a number of exogenous priorities coming from moral, ethical, or business values. This research project will address the current lack of principled, formal approaches for embedding ethics into AI agents and AI enabled group decision support systems by advancing the state of the art in the safety and robustness of AI agents which, given how broadly AI touches our daily lives, will have broad impact and benefit to society.Specifically, the long-term goal of this project is to establish mathematical and machine learning foundations for embedding ethical guidelines into AI for group decision-making systems. Within the machine ethics field there are two main approaches: the bottom-up approach focused on data-driven machine learning techniques and the top-down approach following symbolic and logic-based formalisms. This project brings these two methodologies closer together through three specific aims. (1) Modeling and Evaluating Ethical Principles: this project will extend principles in social choice theory and fair division using preference models from the literature on knowledge representation and preference reasoning. (2) Learning Ethical Principles From Data: this project will develop novel machine-learning frameworks to learn individual ethical principles and then aggregate them for use in group decision making systems. And finally, (3) Embedding Ethical Principles into Group Decision Support Systems: this project will develop novel frameworks for designing AI-based mechanisms for ethical group decision-making. This research will establish novel methods for the formal and experimental unification of aspects of the top-down or rule-based approach with the bottoms-up or data-based approach for embedding ethics into group decision making systems. The project will also formalize a framework for ethical and constrained reasoning across teams of computational agents.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
日常生活中的许多环境都需要结合群体中个人的主观偏好来做出决策,例如去哪里吃饭、去哪里度假、雇用谁、资助哪些想法或采取什么路线。在许多领域,这些主观偏好与适用于决策场景的道德价值观、伦理原则或业务约束相结合,并且通常优先于偏好。 当人工智能系统向我们推荐产品时,以及当我们使用人工智能系统做出群体决策时,我们都能敏锐地感受到道德价值观与主观偏好的潜在冲突。 这项研究旨在通过提供机制来限制人工智能系统可以做出的决策,从而确保群体决策过程的结果符合人类价值观,从而使人工智能更加负责任。 为了实现建立受道德约束、支持人工智能的群体决策系统的目标,该项目从人类那里汲取灵感,人类经常根据来自道德、伦理或商业价值观的许多外生优先事项来限制自己的决策和行动。 该研究项目将通过推进人工智能代理的安全性和鲁棒性的最先进水平,解决目前缺乏将道德准则嵌入人工智能代理和人工智能支持的群体决策支持系统的原则性、正式方法的问题,考虑到人工智能广泛地触及我们的日常生活具体来说,该项目的长期目标是建立数学和机器学习基础,将道德准则嵌入人工智能的群体决策系统中。 在机器伦理领域有两种主要方法:自下而上的方法专注于数据驱动的机器学习技术,而自上而下的方法遵循基于符号和逻辑的形式主义。该项目通过三个具体目标将这两种方法更加紧密地结合在一起。 (1) 建模和评估道德原则:该项目将使用知识表示和偏好推理文献中的偏好模型来扩展社会选择理论和公平分配的原则。 (2) 从数据中学习道德原则:该项目将开发新颖的机器学习框架来学习个人道德原则,然后将它们汇总以用于群体决策系统。最后,(3) 将道德原则嵌入群体决策支持系统:该项目将开发新颖的框架,用于设计基于人工智能的道德群体决策机制。 这项研究将建立新的方法,将自上而下或基于规则的方法与自下而上或基于数据的方法的各个方面进行正式和实验统一,以将道德嵌入群体决策系统中。 该项目还将正式制定跨计算代理团队的道德和约束推理框架。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pandering in a (flexible) representative democracy
迎合(灵活的)代议制民主
- DOI:
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Sun, Xiaolin;Masur, Jacob;Abramowitz, Ben;Mattei, Nicholas;Zheng;Zizhan
- 通讯作者:Zizhan
Combining Fast and Slow Thinking for Human-like and Efficient Decisions in Constrained Environments
结合快速和慢速思维,在受限环境中做出类似人类的高效决策
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Bergamaschi Ganapini, Marianna;Campbell, Murray;Fabiano, Francesco;Horesh, Lior;Lenchner, Jonathan;Loreggia, Andrea;Mattei, Nicholas;Rossi, Francesca;Srivastava, Biplav;Venable, Kristen Brent
- 通讯作者:Venable, Kristen Brent
Social Mechanism Design: Making Maximally Acceptable Decisions
社会机制设计:做出最大程度可接受的决策
- DOI:
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Abramowitz, Ben;Mattei, Nicholas
- 通讯作者:Mattei, Nicholas
Making Human-Like Moral Decisions
做出类似人类的道德决定
- DOI:10.1145/3514094.3534174
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Loreggia, Andrea;Mattei, Nicholas;Rahgooy, Taher;Rossi, Francesca;Srivastava, Biplav;Venable, Kristen Brent
- 通讯作者:Venable, Kristen Brent
Modeling Voters in Multi-Winner Approval Voting
多方批准投票中的选民建模
- DOI:
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Scheuerman, Jaelle;Harman, Jason;Mattei, Nicholas;Venable, K. Brent
- 通讯作者:Venable, K. Brent
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Mattei其他文献
Submission to CACM Research Highlights : How to Teach Computer Ethics with Science Fiction
提交给 CACM 研究亮点:如何用科幻小说教授计算机伦理
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Emanuelle Burton;Nicholas Mattei - 通讯作者:
Nicholas Mattei
Egalitarianism of Random Assignment Mechanisms
随机分配机制的平均主义
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
H. Aziz;Jiashu Chen;Aris Filos;Simon Mackenzie;Nicholas Mattei - 通讯作者:
Nicholas Mattei
An Empirical Study of Voting Rules and Manipulation with Large Datasets
投票规则和大数据集操作的实证研究
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nicholas Mattei;James Forshee;J. Goldsmith - 通讯作者:
J. Goldsmith
Science Fiction as an Introduction to AI Research
科幻小说作为人工智能研究的入门
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
J. Goldsmith;Nicholas Mattei - 通讯作者:
Nicholas Mattei
Fair Online Allocation of Perishable Goods and its Application to Electric Vehicle Charging
易腐货物在线公平分配及其在电动汽车充电中的应用
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
E. Gerding;Alvaro Perez;H. Aziz;Serge Gaspers;Antonia Marcu;Nicholas Mattei;T. Walsh - 通讯作者:
T. Walsh
Nicholas Mattei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Mattei', 18)}}的其他基金
NSF-BSF: RI: Small: Mechanisms and Algorithms for Improving Peer Selection
NSF-BSF:RI:小型:改进同行选择的机制和算法
- 批准号:
2134857 - 财政年份:2022
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Fair Recommendation Through Social Choice
III:媒介:协作研究:通过社会选择进行公平推荐
- 批准号:
2107505 - 财政年份:2021
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
相似国自然基金
跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
- 批准号:82301120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
- 批准号:82300022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内核区对流活动与云微物理过程对登陆中国台风快速增强(RI)的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
相似海外基金
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: RUI: Automated Decision Making for Open Multiagent Systems
协作研究:RI:中:RUI:开放多智能体系统的自动决策
- 批准号:
2312657 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Multilingual Long-form QA with Retrieval-Augmented Language Models
合作研究:RI:Medium:采用检索增强语言模型的多语言长格式 QA
- 批准号:
2312948 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312956 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant