III: Medium: Collaborative Research: Fair Recommendation Through Social Choice

III:媒介:协作研究:通过社会选择进行公平推荐

基本信息

  • 批准号:
    2107505
  • 负责人:
  • 金额:
    $ 24.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Recommender systems are machine learning systems that provide personalized access to information, media and e-commerce catalogs. These systems are widely used and are central to Americans' experience of the Internet. However, concern has grown that these systems can have negative impacts on both individuals and society more generally, by propagating biases, excluding minoritized sub-groups from recommendation results, and offering less optimal performance to individuals with non-mainstream viewpoints. These issues, as well as other potential harms, have been the topic of recent research attention. However, the practical success of this work has been limited because fairness has generally been conceived in simple, narrow ways, e.g. fairness relative to a single group, and because it has remained largely divorced from real-world organizational practices. In this research, the investigators will overcome both of these limitations. They will conduct a detailed contextual analysis of fairness within a non-profit organization, ensuring that their fairness concepts are grounded in real organizational needs. The ensuing implementation of fair recommendation will reflect the complexities of practice by representing and balancing the viewpoints of different stakeholders. The work will enhance our understanding of algorithmic fairness as a situated and complex concept and of the development challenges arising throughout the full life-cycle of fair machine learning. The multidisciplinary team on this project includes experts in recommender systems, computational social choice, and philanthropic informatics. The team will create new fairness-aware recommendation algorithms that are fundamentally multi-agent in nature and based on algorithmic game theory. From this novel vantage point, the project will reformulate recommendation fairness as a combination of social choice allocation and aggregation problems, which integrate both fairness concerns and personalized recommendation provisions, and derive new recommendation techniques based on this formulation. Working with their non-profit partner, the researchers will conduct interviews and focus groups with diverse stakeholders, building models of the different ways that fairness is operationalized within this organizational context, and generalize these techniques to apply to other organizations. The project will create a model deployment of their multi-stakeholder fairness solution and use both quantitative and qualitative techniques to evaluate it from the perspective of both users and internal stakeholders.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
推荐系统是机器学习系统,提供对信息、媒体和电子商务目录的个性化访问。这些系统被广泛使用,并且是美国人互联网体验的核心。然而,人们越来越担心这些系统可能会传播偏见,将少数群体排除在推荐结果之外,并为具有非主流观点的个人提供不太理想的表现,从而对个人和社会产生更广泛的负面影响。这些问题以及其他潜在危害已成为最近研究关注的主题。然而,这项工作的实际成功是有限的,因为公平通常是以简单、狭隘的方式来构想的,例如相对于单个群体的公平性,并且因为它在很大程度上仍然脱离了现实世界的组织实践。在这项研究中,研究人员将克服这两个限制。他们将对非营利组织内的公平性进行详细的背景分析,确保他们的公平概念植根于实际的组织需求。公平推荐的后续实施将通过代表和平衡不同利益相关者的观点来反映实践的复杂性。这项工作将增强我们对算法公平性作为一个情境复杂概念的理解,以及对公平机器学习整个生命周期中出现的发展挑战的理解。该项目的多学科团队包括推荐系统、计算社会选择和慈善信息学方面的专家。该团队将创建新的公平感知推荐算法,该算法本质上是多代理的,并且基于算法博弈论。从这个新颖的角度来看,该项目将重新将推荐公平性重新表述为社会选择分配和聚合问题的结合,将公平性关注和个性化推荐规定结合起来,并在此基础上衍生出新的推荐技术。研究人员将与非营利合作伙伴合作,对不同的利益相关者进行访谈和焦点小组讨论,建立在该组织背景下实施公平的不同方式的模型,并将这些技术推广到其他组织。该项目将创建其多利益相关者公平解决方案的模型部署,并使用定量和定性技术从用户和内部利益相关者的角度对其进行评估。该奖项反映了 NSF 的法定使命,并被认为值得通过使用评估来支持基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Fairness-Aware Recommendation through Multi-Agent Social Choice
通过多智能体社会选择的动态公平感知推荐
The Many Faces of Fairness: Exploring the Institutional Logics of Multistakeholder Microlending Recommendation
公平的多面性:探索多利益相关方小额贷款建议的制度逻辑
  • DOI:
    10.1145/3593013.3594106
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Smith, Jessie J.;Buhayh, Anas;Kathait, Anushka;Ragothaman, Pradeep;Mattei, Nicholas;Burke, Robin;Voida, Amy
  • 通讯作者:
    Voida, Amy
Multi-agent Social Choice for Dynamic Fairness-aware Recommendation
动态公平感知推荐的多代理社会选择
A Performance-preserving Fairness Intervention for Adaptive Microfinance Recommendation
针对适应性小额信贷建议的保绩效公平干预
Algorithmic fairness, institutional logics, and social choice
算法公平、制度逻辑和社会选择
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Mattei其他文献

Submission to CACM Research Highlights : How to Teach Computer Ethics with Science Fiction
提交给 CACM 研究亮点:如何用科幻小说教授计算机伦理
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emanuelle Burton;Nicholas Mattei
  • 通讯作者:
    Nicholas Mattei
Egalitarianism of Random Assignment Mechanisms
随机分配机制的平均主义
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Aziz;Jiashu Chen;Aris Filos;Simon Mackenzie;Nicholas Mattei
  • 通讯作者:
    Nicholas Mattei
An Empirical Study of Voting Rules and Manipulation with Large Datasets
投票规则和大数据集操作的实证研究
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicholas Mattei;James Forshee;J. Goldsmith
  • 通讯作者:
    J. Goldsmith
Science Fiction as an Introduction to AI Research
科幻小说作为人工智能研究的入门
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Goldsmith;Nicholas Mattei
  • 通讯作者:
    Nicholas Mattei
Fair Online Allocation of Perishable Goods and its Application to Electric Vehicle Charging
易腐货物在线公平分配及其在电动汽车充电中的应用

Nicholas Mattei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Mattei', 18)}}的其他基金

NSF-BSF: RI: Small: Mechanisms and Algorithms for Improving Peer Selection
NSF-BSF:RI:小型:改进同行选择的机制和算法
  • 批准号:
    2134857
  • 财政年份:
    2022
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Modeling and Learning Ethical Principles for Embedding into Group Decision Support Systems
协作研究:RI:小型:建模和学习嵌入群体决策支持系统的道德原则
  • 批准号:
    2007955
  • 财政年份:
    2021
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant

相似国自然基金

基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2402311
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310114
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310262
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310260
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了