Collaborative Research: Application of fluorescence spectroscopy for the characterization of dissolved organic matter: Disentangling common misconceptions and underlying chemistry

合作研究:荧光光谱在溶解有机物表征中的应用:解开常见的误解和基础化学

基本信息

项目摘要

Dissolved organic matter (DOM) is a complex mixture of carbon containing molecules that are present in all aquatic environments. DOM plays an important role in aquatic ecosystems. Thus, variations in DOM chemical composition may inform understanding of different processes in the environment. Fluorescence has emerged as a common tool to characterize DOM, but many challenges are associated with its use. In this research collaboration between the University of Colorado at Boulder and Montana State University, the connection between fluorescence characterization of DOM and specific chemical constituents within this mixture will be evaluated. The results from this study will impact the field of environmental engineering and aquatic science by providing specific guidelines and education regarding the use of fluorescence as a broad metric for DOM chemical understanding in aquatic ecosystems. The characterization of dissolved organic matter (DOM) by fluorescence spectroscopy has become ubiquitous in the environmental engineering and science communities. Specifically, the use of excitation emission matrices (EEMs) has emerged as one of the most common tools used by researchers examining DOM on numerous natural and engineered processes. Given the amount of data collected in an EEM, several qualitative and quantitative approaches have been developed to analyze the results. In most cases, these approaches attempt to tie a fluorescence response to a chemical constituent or behavior within DOM. The environmental engineering and science community has embraced fluorescence as an important tool for the characterization of DOM. However, little progress has been made in understanding what specific factors (e.g., chemical structures and molecular composition) controls the observed fluorescence response. The main goal of this project is to fill the deficiencies in chemical interpretations of fluorescence information by conducting a detailed evaluation of fluorescence analyses as a broad measure to interpret the chemical composition and variability of DOM. The results from this proposal will offer guidelines to engineers and scientists regarding the use of fluorescence for the characterization of DOM. The use of different commonly used fluorescent interpretation metrics will be calibrated against distinct chemical analyses of DOM samples from highly fluorescing environmental fractions. It is expected that this project will provide the community with detailed guidelines regarding the limitations of the use of fluorescence for DOM research in natural and engineered systems. The educational component will focus on the incorporation of results from this study into collegiate curricula and departmental seminars at the collaborating institutions. Graduate and undergraduate students will be educated in analytical chemistry techniques routinely used for water quality assessments. They will also learn advanced analytical DOM characterization techniques at the molecular level. The fluorescent community will be informed of the results from this work via convened sessions organized at domestic and international scientific conferences and publications in high impact scientific journals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
溶解有机物(DOM)是所有水生环境中含有碳的复杂混合物。 DOM在水生生态系统中起重要作用。因此,DOM化学成分的变化可能有助于了解环境中不同过程的理解。荧光已成为表征DOM的常见工具,但是许多挑战与其使用有关。在科罗拉多大学博尔德大学和蒙大拿州立大学之间的这一研究合作中,将评估DOM的荧光表征与该混合物中特定化学成分之间的联系。这项研究的结果将通过提供有关使用荧光作为水生生态系统中DOM化学理解的广泛指标的特定准则和教育,从而影响环境工程和水平科学的领域。 通过荧光光谱对溶解有机物(DOM)的表征在环境工程和科学界已经无处不在。具体而言,激发发射矩阵(EEM)的使用已成为研究人员在许多自然和工程过程中检查DOM的最常见工具之一。鉴于在EEM中收集的数据量,已经开发了几种定性和定量方法来分析结果。在大多数情况下,这些方法试图将荧光响应与DOM内的化学成分或行为联系起来。环境工程和科学界已将荧光作为DOM表征的重要工具。但是,在理解哪些特定因素(例如化学结构和分子组成)控制观察到的荧光反应方面,几乎没有取得进展。该项目的主要目的是通过对荧光分析进行详细评估作为解释DOM的化学组成和变异性的广泛措施,以填补荧光信息的化学解释的缺陷。该提案的结果将为工程师和科学家提供有关使用荧光来表征DOM的指南。将使用不同常用的荧光解释指标的使用,以针对高度荧光环境分数的DOM样品的不同化学分析进行校准。预计该项目将为社区提供有关自然和工程系统中DOM研究的局限性的详细指南。教育组成部分将集中于合作机构的学院课程和部门研讨会的结果。研究生和本科生将接受通常用于水质评估的分析化学技术教育。他们还将在分子水平学习高级分析DOM表征技术。荧光社区将通过在高影响力科学期刊上在国内和国际科学会议和出版物中组织的召集会议来告知这项工作的结果。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来获得支持的。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Advancing Critical Applications of High Resolution Mass Spectrometry for DOM Assessments: Re-Engaging with Mass Spectral Principles, Limitations, and Data Analysis
  • DOI:
    10.1021/acs.est.0c04557
  • 发表时间:
    2020-10-06
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    D'Andrilli, Juliana;Fischer, Sarah J.;Rosario-Ortiz, Fernando L.
  • 通讯作者:
    Rosario-Ortiz, Fernando L.
DOM Molecular Weight Fractionation and Fluorescence Quantum Yield Assessment Using a Coupled In-Line SEC Optical Property System
使用耦合在线 SEC 光学特性系统进行 DOM 分子量分级和荧光量子产率评估
  • DOI:
    10.1021/acsestwater.2c00318
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanson, Blair;Wünsch, Urban;Buckley, Shelby;Fischer, Sarah;Leresche, Frank;Murphy, Kathleen;D’Andrilli, Juliana;Rosario-Ortiz, Fernando L.
  • 通讯作者:
    Rosario-Ortiz, Fernando L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juliana D'Andrilli其他文献

Juliana D'Andrilli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juliana D'Andrilli', 18)}}的其他基金

Collaborative Research: LTREB Renewal - River ecosystem responses to floodplain restoration
合作研究:LTREB 更新 - 河流生态系统对洪泛区恢复的响应
  • 批准号:
    2324879
  • 财政年份:
    2023
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: Application of fluorescence spectroscopy for the characterization of dissolved organic matter: Disentangling common misconceptions and underlying chemistry
合作研究:荧光光谱在溶解有机物表征中的应用:解开常见的误解和基础化学
  • 批准号:
    1804736
  • 财政年份:
    2018
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Standard Grant

相似国自然基金

面向工业物联网机器学习应用的“端-边-云”协作技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
  • 批准号:
    22204104
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向工业物联网机器学习应用的“端-边-云”协作技术研究
  • 批准号:
    62271086
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
面向航空制造的人—机器人协作技术及应用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    1000 万元
  • 项目类别:

相似海外基金

Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316614
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316613
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Standard Grant
Collaborative Research:CISE-ANR:CIF:Small:Learning from Large Datasets - Application to Multi-Subject fMRI Analysis
合作研究:CISE-ANR:CIF:Small:从大数据集中学习 - 多对象 fMRI 分析的应用
  • 批准号:
    2316421
  • 财政年份:
    2023
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了