Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
基本信息
- 批准号:2023755
- 负责人:
- 金额:$ 25.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-20 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The natural-human world is characterized by highly interconnected systems, in which a single discipline is not equipped to identify broader signs of systemic risk and mitigation targets. For example, what risks in agriculture, ecology, energy, finance and hydrology are heightened by climate variability and change? How might risks in, for example, space weather, be connected with energy, water and finance? Recent advances in computing and data science, and the data revolution in each of these domains have now provided a means to address these questions. The investigators jointly establish the PRISM Cooperative Institute for pioneering the integration of large-scale, multi-resolution, dynamic data across different domains to improve the prediction of risks (potentials for extreme outcomes and system failures). The investigators' vision is to develop a trans-domain framework that harnesses big data in the context of domain expertise to discover new critical risk indicators, holistically identify their interconnections, predict future risks and spillover potential, and to measure systemic risk broadly. The investigators will work with stakeholders to ultimately create early warnings and targets for critical risk mitigation and grow preparedness for devastating events worldwide; form wide and unique partnerships to educate the next generation of data scientists through postdoctoral researcher and student exchanges, research retreats, and workshops; and broaden participation through recruiting and training of those under-represented in STEM, including women and underrepresented minority students, and impact on stakeholder communities via methods, tools and datasets enabled by PRISM Data Library web services.The PRISM Cooperative Institute's data-intensive cross-disciplinary research directions include: (i) Critical Risk Indicators (CRIs); The investigators define CRIs as quantifiable information specifically associated with cumulative or acute risk exposure to devastating, ruinous losses resulting from a disastrous (cumulative) activity or a catastrophic event. PRISM aims to identify critical risks and existing indicators in many domains, and develop new CRIs by harnessing the data revolution; (ii) Dynamic Risk Interconnections; The investigators will dynamically model and forecast CRIs and PRISM aims to robustly identify a sparse, interpretable lead-lag risk dependence structure of critical societal risks, using state-of-the-art methods to accommodate CRI complexities such as nonstationary, spatiotemporal, and multi-resolution attributes; (iii) Systemic Risk Indicators (SRIs); PRISM will model trans-domain systemic risk, by forecasting critical risk spillovers and via the creation of SRIs for facilitating stakeholder intervention analysis; (iv) Validation & Stakeholder Engagement; The investigators will deploy the PRISM analytical framework on integrative case studies with distinct risk exposure (acute versus cumulative) and catastrophe characteristics (immediate versus sustained), and will solicit regular input from key stakeholders regarding critical risks and their decision variables, to better inform their operational understanding of policy versus practice.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity, and is jointly supported by HDR and the Division of Mathematical Sciences within the NSF Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
天然人类世界的特征是高度相互联系的系统,其中一门学科没有能够确定全身风险和缓解目标的更广泛迹象。例如,气候变化和变化增加了农业,生态,能源,金融和水文学的风险?例如,在空间天气中,风险如何与能源,水和金融联系在一起?计算和数据科学的最新进展以及这些领域的每个域中的数据革命现在提供了一种解决这些问题的手段。研究人员共同建立了棱镜合作研究所,以开创跨不同领域的大规模,多分辨率,动态数据的整合,以改善风险的预测(极端结果和系统失败的潜在)。研究人员的愿景是开发一个跨域框架,该框架在领域专业知识的背景下利用大数据来发现新的关键风险指标,从整体上确定其互连,预测未来的风险和溢出潜力,并广泛衡量系统性风险。调查人员将与利益相关者合作,最终创建早期警告和目标,以减轻严重的风险,并为全球毁灭性事件做好准备;建立广泛而独特的伙伴关系,通过博士后研究人员和学生交流,研究务虚会和讲习班来教育下一代数据科学家;并通过招募和培训STEM中代表性不足的人(包括女性和代表性不足的少数族裔学生,以及通过Prism Data Library Web Services启用的方法,工具和数据集对利益相关者社区的影响)来扩大参与。研究人员将CRIS定义为可量化的信息,这些信息与累积或急性风险暴露于灾难性的,灾难性的损失或灾难性(累积)活性或灾难性事件有关。 Prism旨在确定许多领域中的关键风险和现有指标,并通过利用数据革命来发展新的CRIS; (ii)动态风险互连;研究人员将使用最先进的方法来适应诸如非机构,时空和多分辨率的属性等CRI复杂性,以动态模型和预测CRIS和PRISM旨在牢固地识别关键社会风险的稀疏铅滞后风险依赖性结构; (iii)系统性风险指标(SRIS); Prism将通过预测关键风险溢出并通过创建SRI来促进利益相关者干预分析来对跨域系统风险进行建模; (iv)验证和利益相关者参与;研究人员将在综合案例研究上部署Prism分析框架,并具有明显的风险暴露(急性与累积)和灾难特征(直接与持续),并将征求关键利益相关者的定期投入有关关键风险及其决策变量的定期投入,以便更好地为政策实践提供了对国家科学的发展的一部分。 NSF数学和物理科学局内的HDR和数学科学划分。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of animal-related electric outages using species distribution models and community science data
使用物种分布模型和社区科学数据分析与动物相关的停电
- DOI:10.1088/2752-664x/ac7eb5
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Feng, Mei-Ling E;Owolabi, Olukunle O;Schafer, Toryn L;Sengupta, Sanhita;Wang, Lan;Matteson, David S;Che-Castaldo, Judy P;Sunter, Deborah A
- 通讯作者:Sunter, Deborah A
Rejoinder to “A Tuning-Free Robust and Efficient Approach to High-Dimensional Regression”
对“一种无需调整的稳健且高效的高维回归方法”的反驳
- DOI:10.1080/01621459.2020.1843865
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Wang, Lan;Peng, Bo;Bradic, Jelena;Li, Runze;Wu, Yunan
- 通讯作者:Wu, Yunan
A Tuning-free Robust and Efficient Approach to High-dimensional Regression
- DOI:10.1080/01621459.2020.1840989
- 发表时间:2020-10
- 期刊:
- 影响因子:3.7
- 作者:Lan Wang;Bo Peng;Jelena Bradic;Runze Li;Y. Wu
- 通讯作者:Lan Wang;Bo Peng;Jelena Bradic;Runze Li;Y. Wu
A robust statistical analysis of the role of hydropower on the system electricity price and price volatility
- DOI:10.1088/2515-7620/ac7b74
- 发表时间:2022-03
- 期刊:
- 影响因子:2.9
- 作者:Olukunle O. Owolabi;K. Lawson;Sanhita Sengupta;Ying Huang;Lan Wang;Chaopeng Shen;Mila Getmansky Sherman;D. Sunter
- 通讯作者:Olukunle O. Owolabi;K. Lawson;Sanhita Sengupta;Ying Huang;Lan Wang;Chaopeng Shen;Mila Getmansky Sherman;D. Sunter
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lan Wang其他文献
Reliable Multicast Mechanism in WLAN with Extended Implicit MAC Acknowledgment
具有扩展隐式 MAC 确认的 WLAN 中的可靠组播机制
- DOI:
10.1109/vetecs.2008.590 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Xiaoli Wang;Lan Wang;Yingjie Wang;Daqing Gu - 通讯作者:
Daqing Gu
Density and viscosity for the ternary mixture of 1,3,5-trimethyladamantane+1,2,3,4-tetrahydronaphthalene+n-octanol and corresponding binary systems at T=(293.15 to 343.15) K
1,3,5-三甲基金刚烷1,2,3,4-四氢萘正辛醇三元混合物及相应二元体系在T=(293.15至343.15)K时的密度和粘度
- DOI:
10.1016/j.jct.2022.106726 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xiaomei Qin;Shihao Yang;Jianbo Zhao;Lan Wang;Yingying Zhang;Xiaoyun Qin;Dan Luo - 通讯作者:
Dan Luo
Cleavable Multifunctional Targeting Mixed Micelles with Sequential pH-Triggered TAT Peptide Activation for Improved Antihepatocellular Carcinoma Efficacy
可裂解的多功能靶向混合胶束,具有顺序 pH 触发的 TAT 肽激活功能,可提高抗肝细胞癌功效
- DOI:
10.1021/acs.molpharmaceut.7b00404 - 发表时间:
2017 - 期刊:
- 影响因子:4.9
- 作者:
Jinming Zhang;Yifeng Zheng;Xi Xie;Lan Wang;Ziren Su;Yitao Wang;Kam W. Leong;Meiwan Chen - 通讯作者:
Meiwan Chen
Injury Risk Assessment of Several Crash Data Sets
多个碰撞数据集的伤害风险评估
- DOI:
10.4271/2003-01-1214 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Lan Wang;R. Banglmaier;P. Prasad - 通讯作者:
P. Prasad
A new proposal for RSVP refreshes
RSVP 刷新新提案
- DOI:
10.1109/icnp.1999.801931 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Lan Wang;A. Terzis;Lixia Zhang - 通讯作者:
Lixia Zhang
Lan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lan Wang', 18)}}的其他基金
FRG: Collaborative Research: Quantile-Based Modeling for Large-Scale Heterogeneous Data
FRG:协作研究:大规模异构数据的基于分位数的建模
- 批准号:
1952373 - 财政年份:2020
- 资助金额:
$ 25.46万 - 项目类别:
Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:
1940160 - 财政年份:2019
- 资助金额:
$ 25.46万 - 项目类别:
Standard Grant
NeTS: Student Travel Support for the 2017 SIGCOMM Conference
NeTS:2017 年 SIGCOMM 会议的学生旅行支持
- 批准号:
1743598 - 财政年份:2017
- 资助金额:
$ 25.46万 - 项目类别:
Standard Grant
CRI-New: Collaborative: Building the Core NDN Infrastructure
CRI-New:协作:构建核心 NDN 基础设施
- 批准号:
1629769 - 财政年份:2016
- 资助金额:
$ 25.46万 - 项目类别:
Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
- 批准号:
1512267 - 财政年份:2015
- 资助金额:
$ 25.46万 - 项目类别:
Standard Grant
FIA-NP: Collaborative Research: Named Data Networking Next Phase (NDN-NP)
FIA-NP:协作研究:命名数据网络下一阶段 (NDN-NP)
- 批准号:
1344495 - 财政年份:2014
- 资助金额:
$ 25.46万 - 项目类别:
Cooperative Agreement
New Developments on Quantile Regression Analysis of Censored Data: Theory, Methodology and Computation
截尾数据分位数回归分析的新进展:理论、方法和计算
- 批准号:
1308960 - 财政年份:2013
- 资助金额:
$ 25.46万 - 项目类别:
Standard Grant
Semiparametric Inference for High-dimensional Correlated or Heterogeneous Cross-sectional Data with Discrete Response
具有离散响应的高维相关或异构横截面数据的半参数推理
- 批准号:
1007603 - 财政年份:2010
- 资助金额:
$ 25.46万 - 项目类别:
Standard Grant
FIA: Collaborative Research: Named Data Networking (NDN)
FIA:协作研究:命名数据网络 (NDN)
- 批准号:
1040036 - 财政年份:2010
- 资助金额:
$ 25.46万 - 项目类别:
Standard Grant
NeTS-FIND: Collaborative Research: Enabling Future Internet innovations through Transit wire (eFIT)
NeTS-FIND:协作研究:通过传输线实现未来互联网创新 (eFIT)
- 批准号:
0721645 - 财政年份:2007
- 资助金额:
$ 25.46万 - 项目类别:
Continuing Grant
相似国自然基金
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数字机理耦合建模联动元知识决策的电主轴轴承预测性维护方法研究
- 批准号:52305589
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂环境下旅游需求预测的非平稳性溯源、稳健建模与精度提升策略研究
- 批准号:72374083
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
广域残积土滑坡强降雨触发机制与危险性动态预测研究
- 批准号:42301103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内侧前额叶-海马神经环路在抑郁症围产期复发预测与预防性干预中的作用研究
- 批准号:82371535
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Belmont Forum Collaborative Research: Climate-Induced Migration in Africa and Beyond: Big Data and Predictive Analytics
贝尔蒙特论坛合作研究:非洲及其他地区气候引起的移民:大数据和预测分析
- 批准号:
2310908 - 财政年份:2023
- 资助金额:
$ 25.46万 - 项目类别:
Continuing Grant
Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
- 批准号:
2240281 - 财政年份:2023
- 资助金额:
$ 25.46万 - 项目类别:
Continuing Grant
Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
- 批准号:
2240282 - 财政年份:2023
- 资助金额:
$ 25.46万 - 项目类别:
Continuing Grant
Collaborative Research: Scalable Data-Enabled Predictive Control for Heterogeneous Mixed Traffic Systems
协作研究:异构混合流量系统的可扩展数据支持预测控制
- 批准号:
2320697 - 财政年份:2023
- 资助金额:
$ 25.46万 - 项目类别:
Standard Grant
Sequential Modeling for Prediction of Periodontal Diseases: an intra-Collaborative Practice-based Research study (ICPRS)
牙周病预测的序列模型:基于内部协作实践的研究 (ICPRS)
- 批准号:
10755010 - 财政年份:2023
- 资助金额:
$ 25.46万 - 项目类别: