Semiparametric Inference for High-dimensional Correlated or Heterogeneous Cross-sectional Data with Discrete Response
具有离散响应的高维相关或异构横截面数据的半参数推理
基本信息
- 批准号:1007603
- 负责人:
- 金额:$ 17.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Substantial advancement has been achieved over the past decade in high-dimensional data analysis with diverging number of covariates. However, when the research interest is focused on modeling the relationship between the response variable and a high-dimensional vector of covariates, most existing work only applies when the response variable is continuous and often requires stringent conditions such as independence or homogeneity. Many fundamental problems remain unsolved for high-dimensional data with discrete responses, especially when the standard modeling assumptions are not satisfied. This project aims to develop new statistical theory, methodology and algorithms for analyzing high-dimensional correlated or heterogeneous cross-sectional data with binary or count responses. More specifically, the investigator will (1) rigorously study the asymptotic theory, including consistency and asymptotic normality, of the semiparametric procedure of generalized estimating equations in the new diverging p asymptotic framework; (2) investigate generalized estimating equations based variable selection procedures for high-dimensional longitudinal and spatially correlated data; and (3) investigate the theory and methodology of sparse quantile regression, where the number of parameters may greatly exceed sample size, for analyzing heterogeneous data with possibly discrete responses.The prevalence of high-dimensional binary and count data in various scientific fields, such as biomedical and health sciences, economics, social sciences and environmental studies, demands new statistical theory, methodology and software. Many important issues in analyzing high-dimensional binary or count data, especially in the presence of correlation or heterogeneity, have not been systematically studied. Moreover, existing work based on the full likelihood or the independence assumption in the high-dimensional setting cannot be readily applied. This project will make significant and timely contribution to the general theory and methodology of high-dimensional data analysis in the diverging p framework. Such theories are critical for guiding practical data analysis. Undergraduate and graduate students, especially those from underrepresented groups, will be encouraged to participate in this research project.
在过去的十年中,在高维数据分析中,有分歧的协变量在过去十年中取得了重大进步。但是,当研究兴趣集中在对响应变量与高维向量之间的关系建模时,仅当响应变量是连续的,并且通常需要严格的条件,例如独立性或同质性,大多数现有工作才适用。对于具有离散响应的高维数据,许多基本问题仍未解决,尤其是当不满足标准建模假设时。该项目旨在开发新的统计理论,方法论和算法,用于分析具有二元或计数响应的高维相关或异质横截面数据。 更具体地说,研究人员(1)严格研究了新的不同P渐近框架中广义估计方程的半参数程序的渐近理论,包括一致性和渐近正态性; (2)研究基于广义估计方程的可变选择程序,以用于高维纵向和空间相关的数据; (3)研究稀疏分位数回归的理论和方法,其中参数的数量可能大大超过样本量,用于分析可能具有离散响应的异质数据。高维二元和计数数据在各种科学领域中的流行率,例如生物医学和健康科学,经济学,社会科学和环境研究和统计学,方法,方法,方法,方法,方法,方法,方法,方法,方法,方法,方法,方法,方法,方法,方法,方法。在分析高维二元或计数数据时,尤其是在存在相关性或异质性的情况下,尚未系统地研究许多重要问题。此外,无法轻易应用基于高维环境中的全部可能性或独立性假设的现有工作。该项目将对分歧P框架中高维数据分析的一般理论和方法做出重大及时的贡献。这些理论对于指导实际数据分析至关重要。将鼓励本科生和研究生,尤其是来自代表性不足的团体的研究生,他们将被鼓励参加该研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lan Wang其他文献
Reliable Multicast Mechanism in WLAN with Extended Implicit MAC Acknowledgment
具有扩展隐式 MAC 确认的 WLAN 中的可靠组播机制
- DOI:
10.1109/vetecs.2008.590 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Xiaoli Wang;Lan Wang;Yingjie Wang;Daqing Gu - 通讯作者:
Daqing Gu
Density and viscosity for the ternary mixture of 1,3,5-trimethyladamantane+1,2,3,4-tetrahydronaphthalene+n-octanol and corresponding binary systems at T=(293.15 to 343.15) K
1,3,5-三甲基金刚烷1,2,3,4-四氢萘正辛醇三元混合物及相应二元体系在T=(293.15至343.15)K时的密度和粘度
- DOI:
10.1016/j.jct.2022.106726 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xiaomei Qin;Shihao Yang;Jianbo Zhao;Lan Wang;Yingying Zhang;Xiaoyun Qin;Dan Luo - 通讯作者:
Dan Luo
A simple and robust reporter gene assay for measuring the bioactivity of anti-RANKL therapeutic antibodies
一种简单而强大的报告基因测定法,用于测量抗 RANKL 治疗抗体的生物活性
- DOI:
10.1039/c9ra07328k - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Chuan;Lan Wang;Yongbo Ni;Junzhi Wang - 通讯作者:
Junzhi Wang
Identification of Quasi-ARX neurofuzzy model by using SVR-based approach with input selection
使用基于 SVR 的输入选择方法识别准 ARX 神经模糊模型
- DOI:
10.1109/icsmc.2011.6083897 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Y. Cheng;Lan Wang;Jing Zeng;Jinglu Hu - 通讯作者:
Jinglu Hu
Partially Phase-Locked Solutions to the Kuramoto Model
Kuramoto 模型的部分锁相解决方案
- DOI:
10.1007/s10955-021-02783-5 - 发表时间:
2020 - 期刊:
- 影响因子:1.6
- 作者:
J. Bronski;Lan Wang - 通讯作者:
Lan Wang
Lan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lan Wang', 18)}}的其他基金
FRG: Collaborative Research: Quantile-Based Modeling for Large-Scale Heterogeneous Data
FRG:协作研究:大规模异构数据的基于分位数的建模
- 批准号:
1952373 - 财政年份:2020
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:
2023755 - 财政年份:2020
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:
1940160 - 财政年份:2019
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
NeTS: Student Travel Support for the 2017 SIGCOMM Conference
NeTS:2017 年 SIGCOMM 会议的学生旅行支持
- 批准号:
1743598 - 财政年份:2017
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
CRI-New: Collaborative: Building the Core NDN Infrastructure
CRI-New:协作:构建核心 NDN 基础设施
- 批准号:
1629769 - 财政年份:2016
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
- 批准号:
1512267 - 财政年份:2015
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
FIA-NP: Collaborative Research: Named Data Networking Next Phase (NDN-NP)
FIA-NP:协作研究:命名数据网络下一阶段 (NDN-NP)
- 批准号:
1344495 - 财政年份:2014
- 资助金额:
$ 17.66万 - 项目类别:
Cooperative Agreement
New Developments on Quantile Regression Analysis of Censored Data: Theory, Methodology and Computation
截尾数据分位数回归分析的新进展:理论、方法和计算
- 批准号:
1308960 - 财政年份:2013
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
FIA: Collaborative Research: Named Data Networking (NDN)
FIA:协作研究:命名数据网络 (NDN)
- 批准号:
1040036 - 财政年份:2010
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
NeTS-FIND: Collaborative Research: Enabling Future Internet innovations through Transit wire (eFIT)
NeTS-FIND:协作研究:通过传输线实现未来互联网创新 (eFIT)
- 批准号:
0721645 - 财政年份:2007
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
相似国自然基金
基于因果推理的人机物融合系统需求建模与验证研究
- 批准号:62362006
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于行为因果推理的跨网络用户对齐技术研究
- 批准号:62302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
精细化事件知识表示、获取与推理
- 批准号:62306299
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向大规模异构边缘网络的智能低碳协同推理机制研究
- 批准号:62301335
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
多重知识驱动的少样本视频时序规划及推理关键技术研究
- 批准号:62372403
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 17.66万 - 项目类别:
High-Dimensional Random Forests Learning, Inference, and Beyond
高维随机森林学习、推理及其他
- 批准号:
2310981 - 财政年份:2023
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
- 批准号:
2237322 - 财政年份:2023
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324490 - 财政年份:2023
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324489 - 财政年份:2023
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant