NSF Center for Sustainable Nanotechnology

NSF 可持续纳米技术中心

基本信息

  • 批准号:
    2001611
  • 负责人:
  • 金额:
    $ 2000万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The NSF Center for Sustainable Nanotechnology (CSN) seeks to understand how nanoparticles, particles that are at least 10,000 times smaller than the width of a human hair, transform and interact in and with water and biological systems. Nanoparticles can vary in elemental composition, structure, and properties, which makes them useful for industries ranging from electronics, to batteries, to cosmetics. As nanoparticle use becomes more widespread, however, they are appearing in the environment. When nanoparticles are incorporated into biological systems they may induce unusual behavior that is beneficial or harmful, but is as of yet poorly understood. For instance, due to their small size, some nanoparticles can easily pass through some cell membranes. With very high surface area to volume ratios, nanoparticles can also be highly reactive, which may trigger chemical changes in the environment or to the nanoparticle itself. The CSN applies a "make, measure, model" strategy to develop new functional nanomaterials with increased sustainability and reduced biological impact. Expertise with synthetic methods, in situ analytical techniques, and computational methods is leveraged to understand, predict, and control nanoparticle properties and their chemical interactions with the environment and biological systems. The CSN addresses key knowledge gaps in the areas of nanoparticle properties which will result in better prediction of specific nanoparticle chemical properties and their biological interactions. This will ultimately serve the national interest by allowing for the design of more effective and more benign nanoparticles for many applications. Some of the systems the CSN investigates include: transition metal oxides and phosphates and two-dimensional quantum materials; gold, diamond and silicon based nanoparticles with defined organic and inorganic surface coatings; and as well as emerging nanoparticle compositions that exhibit fundamental new science and utility, such as those based on polymeric carbon dots, and nanovacancies in nanodiamond. This integrated, multi-institutional, and collaborative team involves researchers from the University of Wisconsin-Madison, University of Minnesota, Boston University, Georgia Institute of Technology, Johns Hopkins University, Augsburg University, University of California-Riverside, University of Wisconsin-Milwaukee, University of Iowa, University of Illinois at Urbana-Champaign, University of Maryland Baltimore County, Pacific Northwest National Laboratory, and the Connecticut Agricultural Experimental Station. The Center has a strong innovation component that involves the translation of research results into intellectual property, as well as other collaborations with several industrial partners. The CSN has an inclusive and transparent management approach that enables a positive Center climate and facilitates the integration of student learning across Center activities. Students broaden and deepen their technical expertise and grant writing through student laboratory exchanges and seed grant opportunities. The CSN places special emphasis on communication training. Example mechanisms to develop student communication skills are the popular Sustainable Nano Blog, http://sustainable-nano.com/, and the Spanish language-based Nano Sostenible Blog, http://nano-sostenible.com/. These are key components of the Center's informal science communication efforts, and students have ample opportunity to participate in these educational websites. Webinars on fostering technical innovation, internship opportunities, and opportunities to serve on the advisory board are mechanisms through which students further develop their professional skill sets. The CSN is committed to broadening participation efforts and incorporates summer research experiences for undergraduates and veterans, and relationships with minority-serving institutions, primarily undergraduate institutions, and community colleges as ways to address inclusivity. The strong focus on the CSN climate helps to ensure all participants feel welcomed, valued, and supported. Partnerships with the University of Puerto Rico at Cayey and Rio Piedras, the University of Texas Rio Grand Valley, Tuskegee University, and Georgia State University help to ensure that a diverse group of students can participate in the CSN where they develop not only the skills mentioned above, but also an understanding of the need to approach questions in chemistry with an awareness of sustainability, inclusivity, and interdisciplinarity. The CSN experience will prepare participants to make unique future contributions as members of the chemical workforce. The CSN organizes their goals along four focus areas. One area focuses on establishing nanoparticle structure–function relationships. Chemical composition, size, shape, and organic or inorganic surface modifications are investigated with a combination of computational and experimental approaches. Transition metal oxides, nanoparticles comprised of earth-abundant elements, and nanoparticles that demonstrate novel properties or new utility are focal points. A second area of investigation centers on understanding nanoparticle transformations that occur in the environment and in biological media. Chemical changes in the nanoparticle core, the roles of inorganic and organic ions to impact nanoparticle stability, and surface structure are some of the areas explored. The third CSN thrust area explores nanoparticle coatings, referred to as coronas, formed by their exposure to the environment or biological systems at aqueous interfaces as a function of time. Analytical and computational approaches are developed to characterize and model the chemical nature and formation mechanisms of nanoparticle coronas. The fourth area is a chemistry-focused investigation of the physicochemical properties of nanoparticles and their interactions with biological systems. Nanoparticles with well-defined composition, structure, and surface chemistry are used to correlate, better understand, and predict nanoparticle physicochemical properties, spatial and temporal interactions at biological surfaces, and the direct or indirect effects on molecular interactions in cells and organisms. The CSN enriches the chemistry community by providing new tools for characterizing chemical processes at nanoparticle surfaces and by developing experimentally validated computational methods to predict the molecular-level behavior of complex materials in aqueous media. CSN participants are engaged in activities aimed at facilitating the creation and dissemination of knowledge, enhancing innovation and translation of research products and outcomes to the commercial sector, and providing unique education and training opportunities for students and postdoctoral researchers from diverse backgrounds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF 可持续纳米技术中心 (CSN) 致力于了解纳米粒子(比人类头发宽度至少小 10,000 倍的粒子)如何在水和生物系统中转化并相互作用,从而改变其元素组成和结构。和特性,这使得它们可用于电子、电池、化妆品等行业,然而,随着纳米颗粒的使用变得更加广泛,当纳米颗粒被纳入生物系统时,它们就会出现在环境中。可能会引起有益或有害的异常行为,但目前人们对此还知之甚少。例如,由于纳米颗粒尺寸较小,因此可以轻松穿过某些细胞膜,而纳米颗粒也可以通过非常高的表面积与体积比。 CSN 采用“制造、测量、建模”策略来开发具有更高可持续性并减少生物影响的新型功能性纳米材料,并具有合成方法和原位分析的专业知识。技术和计算CSN 方法用于理解、预测和控制纳米颗粒特性及其与环境和生物系统的化学相互作用,解决了纳米颗粒特性领域的关键知识空白,这将有助于更好地预测特定纳米颗粒化学特性及其生物相互作用。这最终将有助于为许多应用设计更有效、更良性的纳米颗粒,包括:过渡金属氧化物和磷酸盐以及二维量子材料;具有明确的有机和无机表面涂层的硅基纳米颗粒;以及具有基础新科学和实用性的新兴纳米颗粒组合物,例如基于聚合物碳点的组合物和纳米金刚石中的纳米空位。研究人员来自威斯康星大学麦迪逊分校、明尼苏达大学、波士顿大学、佐治亚理工学院、约翰霍普金斯大学、奥格斯堡大学、加州大学河滨分校、威斯康星密尔沃基大学、爱荷华大学、伊利诺伊大学厄巴纳-香槟分校、马里兰大学巴尔的摩县分校、太平洋西北国家实验室和康涅狄格州农业实验站拥有强大的创新组成部分,涉及将研究成果转化为知识。 CSN 拥有包容性和透明的管理方法,可营造积极的中心氛围,并促进学生在中心活动中的学习整合,并通过学生扩大和深化他们的技术专业知识和资助写作。实验室交流和CSN 特别强调培养学生沟通技能的示例机制是流行的可持续纳米博客 (http://sustainable-nano.com/) 和基于西班牙语的 Nano Sostenible 博客 (http://sustainable-nano.com/)。 //nano-sostenible.com/。这些是该中心非正式科学传播工作的关键组成部分,学生有充足的机会参加这些教育网站,以促进技术创新、实习机会和在顾问委员会任职的机会。是学生进一步发展的机制CSN 致力于扩大参与力度,并纳入本科生和退伍军人的暑期研究经验,以及与少数族裔服务机构(主要是本科机构)和社区学院的关系,以此作为解决 CSN 包容性的方法。与波多黎各大学凯伊分校和里奥彼德拉斯分校、德克萨斯大学里约大谷分校、塔斯基吉大学和佐治亚州立大学的合作伙伴关系有助于确保参与者的多元化。学生可以参加 CSN,他们不仅可以培养上述技能,还可以理解以可持续性、包容性和跨学科意识来解决化学问题的必要性。CSN 的经验将为参与者作为成员做出独特的未来贡献做好准备。 CSN 将其目标分为四个重点领域,其中一个重点是通过计算和实验方法的结合来研究化学成分、尺寸、形状以及有机或无机表面修饰。过渡金属氧化物、由地球丰富的元素组成的纳米颗粒以及表现出新特性或新用途的纳米颗粒是研究的重点,重点是了解纳米颗粒在环境和生物介质中发生的化学变化。核心、无机和有机离子对纳米颗粒稳定性的作用以及表面结构是探索的一些领域。开发了分析和计算方法来表征和模拟纳米粒子冠的化学性质和形成机制,以化学为重点研究纳米粒子和纳米粒子的物理化学性质。具有明确组成、结构和表面化学的纳米粒子用于关联、更好地理解和预测纳米粒子的物理化学性质、生物表面的空间和时间相互作用以及直接或间接的相互作用。 CSN 通过提供表征纳米颗粒表面化学过程的新工具以及开发经过实验验证的计算方法来预测水介质中复杂材料的分子水平行为,从而丰富了化学界。从事旨在促进知识创造和传播、加强研究产品和成果向商业部门的创新和转化以及为来自不同背景的学生和博士后研究人员提供独特的教育和培训机会的活动。该奖项反映了 NSF 的法定使命和有通过使用基金会的智力价值和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(88)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Binding of polar and hydrophobic molecules at the LiCoO 2 (001)-water interface: force field development and molecular dynamics simulations
LiCoO 2 (001)-水界面极性分子和疏水分子的结合:力场发展和分子动力学模拟
  • DOI:
    10.1039/d2nr00672c
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Liang, Dongyue;Liu, Juan;Heinz, Hendrik;Mason, Sara E.;Hamers, Robert J.;Cui, Qiang
  • 通讯作者:
    Cui, Qiang
Redesign of hydrophobic quantum dots mitigates ligand-dependent toxicity in the nematode C. elegans
疏水量子点的重新设计减轻了线虫的配体依赖性毒性 秀丽隐杆线虫
  • DOI:
    10.1016/j.impact.2021.100318
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Niemuth, NicholasJ.;Williams, Denise N.;Mensch, Arielle C.;Cui, Yi;Orr, Galya;Rosenzweig, Ze'ev;Klaper, Rebecca D.
  • 通讯作者:
    Klaper, Rebecca D.
Influence of Sensor Coating and Topography on Protein and Nanoparticle Interaction with Supported Lipid Bilayers
传感器涂层和形貌对蛋白质和纳米颗粒与支持的脂质双层相互作用的影响
  • DOI:
    10.1021/acs.langmuir.0c02662
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yin, Hui;Mensch, Arielle C.;Lochbaum, Christian A.;Foreman;Caudill, Emily R.;Hamers, Robert J.;Pedersen, Joel A.
  • 通讯作者:
    Pedersen, Joel A.
What’s in That Medicine: An Inquiry-Based Activity to Introduce Medicinally Active Natural Products and Metals
该药物中含有什么:基于探究的活动,介绍具有药用活性的天然产品和金属
  • DOI:
    10.1021/acs.jchemed.2c00836
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Mitchell, Stephanie L.;McCourt, Jill S.;Nesset;Kimball, Gabrielle L.;Mikesell, Jasmine N.;Tollefson, Emily J.;Carlson, Erin E.
  • 通讯作者:
    Carlson, Erin E.
Nanoparticle tracking analysis and statistical mixture distribution analysis to quantify nanoparticle–vesicle binding
纳米颗粒跟踪分析和统计混合物分布分析,以量化纳米颗粒与囊泡的结合
  • DOI:
    10.1016/j.jcis.2022.01.141
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Foreman;Fung Ma, Ting;Hoover, Brandon M.;Wu, Meng;Murphy, Catherine J.;Murphy, Regina M.;Pedersen, Joel A.
  • 通讯作者:
    Pedersen, Joel A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Hamers其他文献

Predicting the phytotoxic mechanism of action of LiCoO2nanomaterials using a novel multiplexed algal cytological imaging (MACI) assay and machine learning
  • DOI:
    10.1039/d3en00629h
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Ostovich;Austin Henke;Curtis Green;Robert Hamers;Rebecca Klaper
  • 通讯作者:
    Rebecca Klaper
Role of surface contaminants, functionalities, defects and electronic structure: general discussion
  • DOI:
    10.1039/c4fd90027h
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Richard McCreery;Chi-Chang Hu;Julie Macpherson;Matěj Velický;John Foord;Matteo Duca;Katherine Holt;Manuel Alvarez-Guerra;Robert Dryfe;Surbhi Sharma;Patrick R. Unwin;Jingping Hu;George Zheng Chen;Fulian Qiu;Robert Hamers;Mark Newton;Andrew N. J. Rodgers;Philip A. Ash;Deborah Lomax;Keith Stevenson;Aleix Güell;Thomas Varley;Stephen Hodge;Fernanda Juarez
  • 通讯作者:
    Fernanda Juarez
Synthesis and characterization of alkylsilane ethers with oligo(ethylene oxide) substituents for safe electrolytes in lithium-ion batteries
用于锂离子电池安全电解质的具有低聚环氧乙烷取代基的烷基硅烷醚的合成和表征
  • DOI:
    10.1039/c0jm01596b
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingzhi Zhang;Leslie Lyons;Jocelyn Newhouse;Zhengcheng Zhang;Megan Straughan;Zonghai Chen;Khalil Amine;Robert Hamers;Robert West
  • 通讯作者:
    Robert West
Carbon electrode interfaces for synthesis, sensing and electrocatalysis: general discussion
  • DOI:
    10.1039/c4fd90038c
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Yury Gogotsi;Richard McCreery;Stephen M. Lyth;Robert Dryfe;John Foord;Matěj Velický;Julie Macpherson;Matteo Duca;Katherine Holt;Manuel Alvarez-Guerra;Heisi Kurig;Surbhi Sharma;Patrick R. Unwin;George Zheng Chen;Milo Shaffer;Taiwo Alaje;Robert Hamers;Mark Newton;Philip A. Ash;Keith Stevenson;Siegfried Waldvogel;Jingping Hu;Aleix Güell;Jonathan Quinson
  • 通讯作者:
    Jonathan Quinson

Robert Hamers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Hamers', 18)}}的其他基金

Photoelectron Emission at Semiconductor-Liquid Interfaces
半导体-液体界面处的光电子发射
  • 批准号:
    1904106
  • 财政年份:
    2019
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Quantum-based chemical sensing
RAISE-TAQS:基于量子的化学传感
  • 批准号:
    1839174
  • 财政年份:
    2018
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
Needs and Opportunities for Mid-Scale Instrumentation in Chemistry
化学中中型仪器的需求和机遇
  • 批准号:
    1644338
  • 财政年份:
    2016
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
Center for Sustainable Nanotechnology
可持续纳米技术中心
  • 批准号:
    1503408
  • 财政年份:
    2015
  • 资助金额:
    $ 2000万
  • 项目类别:
    Cooperative Agreement
Photoelectron Emission at Diamond-Liquid Interfaces
金刚石-液体界面处的光电子发射
  • 批准号:
    1507432
  • 财政年份:
    2015
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant
Functional Carbon Nano-skins: Integrating Nanostructured Oxides with Molecular Systems
功能性碳纳米皮:纳米结构氧化物与分子系统的集成
  • 批准号:
    1310293
  • 财政年份:
    2013
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
Photoelectron Emission at Diamond-Liquid Interfaces
金刚石-液体界面处的光电子发射
  • 批准号:
    1207281
  • 财政年份:
    2012
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant
CCI Phase 1: Center for Sustainable Nanotechnology
CCI 第一阶段:可持续纳米技术中心
  • 批准号:
    1240151
  • 财政年份:
    2012
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
Multifunctional Molecular Interfaces to Metal Oxide Surfaces
金属氧化物表面的多功能分子界面
  • 批准号:
    0911543
  • 财政年份:
    2009
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant
Electrocatalytically Active Molecule-Nanostructure Hybrid Materials
电催化活性分子-纳米结构杂化材料
  • 批准号:
    0706559
  • 财政年份:
    2008
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant

相似国自然基金

IRF4杂合突变导致生发中心反应异常和浆细胞分化缺陷的分子机制
  • 批准号:
    32330033
  • 批准年份:
    2023
  • 资助金额:
    216 万元
  • 项目类别:
    重点项目
金属杂原子分子筛M-H-SUZ-4“双活性中心”构建及催化二甲醚羰基化反应机制研究
  • 批准号:
    22302115
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据安全隐私保护背景下多中心联邦因果推断方法研究
  • 批准号:
    82330108
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
中心体蛋白Ccdc159缺失所致无头精子综合症的发病机制研究
  • 批准号:
    82371614
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
ADRA2a调控滤泡辅助性T细胞与生发中心B细胞相互作用参与哮喘发病的机制研究
  • 批准号:
    82370025
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CCI Phase I: NSF Center for Sustainable Photoredox Catalysis (SuPRCat)
CCI 第一阶段:NSF 可持续光氧化还原催化中心 (SuPRCat)
  • 批准号:
    2318141
  • 财政年份:
    2023
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
NSF Engineering Research Center for Advancing Sustainable and Distributed Fertilizer Production (CASFER)
NSF 促进可持续和分布式肥料生产工程研究中心 (CASFER)
  • 批准号:
    2133576
  • 财政年份:
    2022
  • 资助金额:
    $ 2000万
  • 项目类别:
    Cooperative Agreement
CCI Phase I: NSF Center for Sustainable Separations of Metals
CCI 第一阶段:NSF 金属可持续分离中心
  • 批准号:
    1925708
  • 财政年份:
    2019
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
CCI Phase I: NSF Center for Sustainable Separations of Metals
CCI 第一阶段:NSF 金属可持续分离中心
  • 批准号:
    1925708
  • 财政年份:
    2019
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
NSF Center for Sustainable Polymers
NSF 可持续聚合物中心
  • 批准号:
    1901635
  • 财政年份:
    2019
  • 资助金额:
    $ 2000万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了