Constraining earthquake stress drop and mantle attenuation from teleseismic body-wave spectra

从远震体波谱中约束地震应力降和地幔衰减

基本信息

项目摘要

Most earthquakes occur within plate-tectonic convergence zones. Earthquakes which occur at depths larger than ~50 km (30 miles) result from rupture events in oceanic plates that are sinking into the Earth’s mantle. These deep earthquakes have similar characteristics than shallow earthquakes, yet they are different. Observations suggest that deep earthquakes involve frictional sliding along planar faults, as the shallow ones. Yet it is still unclear how faults can break at the extreme pressure prevailing in the seismogenic mantle, reaching up to 250,000 times the atmospheric pressure. The mechanisms responsible for deep earthquakes have thus been debated for decades. Here, the researchers investigate these mechanisms using new analyses of seismic waves. Seismic waves travel away from the earthquakes that generated them, through the Earth’s mantle and crust. When they reach the surface, they can be used to investigate events in the deep Earth. Here, the team analyze the wave spectra, analogous to how astronomers analyze the electromagnetic spectra of stars. It tests the hypothesis that deep earthquakes rupture small fault planes with high rupture speeds. The researchers document the differences in shear-stress states of faults in the crust (at shallow depths) and in the mantle (at large depths). This project leverages national investments in seismological infrastructure, such as the IRIS Global Seismic Network (GSN) and the Earthscope USArray. It provides support for an early career female scientist and a female graduate student. It also provides training in seismology, geophysics, scientific computing, and big-data analytics for several undergraduate students at University of Michigan - Ann Arbor. Here, the analysis of the earthquake rupture process and seismic wave propagation are tightly linked, as both the earthquake source complexity and the heterogeneous properties of rock along the wave paths shape seismic wave spectra. The team follows a new two-step spectral-ratio approach aimed at optimally separating the source and propagation effects in teleseismic P-wave and S-wave spectra. Using the four-decade long IRIS database, the researchers select pairs of nearby earthquakes to determine rupture durations and stress drops of several hundred large earthquakes in the crust and mantle. From pairs of GSN and USArray ground-motion recordings, they estimate how seismic wave attenuation and scattering affect wave spectra. By processing the spectra consistently in both steps, they can compare the source characteristics and chart with robust statistics how stress drop varies with earthquake depth, magnitude, and tectonic plate boundary. Furthermore, they quantify wave propagation along several well-travelled paths to add new constraints on variations of wave scattering and attenuation in the Earth.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大多数地震发生在板岩收敛区域内。地震发生在大于约50公里(30英里)的深度,这是由于海洋板的破裂事件导致的,这些盘子沉入地球的地幔中。这些深层地震的特征与浅层地震具有相似的特征,但它们是不同的。观察结果表明,深层地震涉及沿平面断层的摩擦滑动。然而,目前尚不清楚如何在地震生成地幔中盛行的极端压力下破裂,达到了大气压力的25万倍。因此,几十年来一直在辩论造成深层地震的机制。在这里,研究人员使用地震波的新分析研究了这些机制。地震波从地震中脱离地震,穿过地球的地幔和地壳。当它们到达表面时,它们可用于研究深地球中的事件。在这里,小组分析了波谱,类似于天文学家如何分析恒星的电子光谱。它检验了以下假设:深震破裂的小断层平面具有高破裂速度。研究人员记录了地壳(在浅深度)和地幔(大深度)中剪切压力状态的差异。该项目利用国家对地震基础设施的投资,例如IRIS全球地震网络(GSN)和EarthScope USArray。它为早期职业女科学家和女研究生提供了支持。它还为密歇根大学 - 安阿伯大学的几位本科生的地震学,地球物理学,科学计算和大数据分析提供了培训。在这里,对地震破裂过程和地震波传播的分析紧密相连,因为地震源复杂性和沿波道沿波路径的异质性质形状的地震波光谱。该团队遵循一种新的两步光谱比率方法,旨在最佳地分开远距离震动P-波和S波光谱中的源和传播效果。研究人员使用四个十年的长虹膜数据库选择附近的地震,以确定地壳和地幔中数百大地震的破裂持续时间和应力下降。从GSN和USARRAY地面录音中,它们估计地震波衰减和散射如何影响波光谱。通过在这两个步骤中始终如一地处理光谱,它们可以将源特性和图表与强大的统计数据进行比较应力下降如何随地震深度,幅度和构造板边界而变化。此外,他们沿着几条良好的路径量化了波浪传播,以增加地球中波散射和衰减变化的新约束。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响审查标准通过评估来评估的。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of shear wave velocity heterogeneity on SH-wave reverberation imaging of the mantle transition zone
剪切波速度不均匀性对地幔过渡带SH波混响成像的影响
  • DOI:
    10.1093/gji/ggac321
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Liu, Meichen;Ritsema, Jeroen;Chaves, Carlos A. M.
  • 通讯作者:
    Chaves, Carlos A. M.
Characterizing Multisubevent Earthquakes Using the Brune Source Model
使用 Brune 震源模型表征多子事件地震
Stress Drop Variation of Deep‐Focus Earthquakes Based on Empirical Green's Functions
基于经验格林函数的深源地震应力降变化
  • DOI:
    10.1029/2019gl086055
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Liu, Meichen;Huang, Yihe;Ritsema, Jeroen
  • 通讯作者:
    Ritsema, Jeroen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeroen Ritsema其他文献

Radial Q<sub>μ</sub> structure of the lower mantle from teleseismic body-wave spectra
  • DOI:
    10.1016/j.epsl.2011.01.023
  • 发表时间:
    2011-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yong Keun Hwang;Jeroen Ritsema
  • 通讯作者:
    Jeroen Ritsema
New USArray observations of 100-km scale, layered scattering structures
USArray 对 100 公里尺度层状散射结构的新观测
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeroen Ritsema;Satoshi Kaneshima;Sam Haugland
  • 通讯作者:
    Sam Haugland

Jeroen Ritsema的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeroen Ritsema', 18)}}的其他基金

Do thermochemical convection models explain wave propagation and scattering?
热化学对流模型可以解释波传播和散射吗?
  • 批准号:
    1644829
  • 财政年份:
    2017
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Continuing Grant
What are the seismic expressions of deep thermal and thermochemical plumes?
深部热羽流和热化学羽流的地震表达是什么?
  • 批准号:
    1565511
  • 财政年份:
    2016
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant
An analysis of upper mantle discontinuity structure using 3D synthetics and global network data
使用 3D 合成和全球网络数据分析上地幔不连续结构
  • 批准号:
    1416695
  • 财政年份:
    2014
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Continuing Grant
GeoPRISMS Office Support
GeoPRISMS 办公室支持
  • 批准号:
    1339783
  • 财政年份:
    2013
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: Surface wave and body wave modeling of attenuation in the mantle transition zone
合作研究:地幔过渡区衰减的表面波和体波建模
  • 批准号:
    0944167
  • 财政年份:
    2011
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Bridging the gap between long- and short- wavelength structure in the mantle
合作研究:弥合地幔长波长和短波长结构之间的差距
  • 批准号:
    1015172
  • 财政年份:
    2010
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Continuing Grant
10th International Workshop on the Modeling of Mantle Convection; Carry-le-Rouet, France; September, 2007
第十届地幔对流模拟国际研讨会;
  • 批准号:
    0731606
  • 财政年份:
    2007
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant
Interrogation of global seismic models with 3D wave simulations
通过 3D 波模拟询问全球地震模型
  • 批准号:
    0609763
  • 财政年份:
    2006
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Continuing Grant
Utilizing Permanent and Temporary Broadband Regional Networks to Refine Seismic Models of the Lower Mantle
利用永久和临时宽带区域网络完善下地幔地震模型
  • 批准号:
    9896210
  • 财政年份:
    1998
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant
Utilizing Permanent and Temporary Broadband Regional Networks to Refine Seismic Models of the Lower Mantle
利用永久和临时宽带区域网络完善下地幔地震模型
  • 批准号:
    9706663
  • 财政年份:
    1997
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant

相似国自然基金

水压力下诱发地震动机理模型不确定性量化及修正方法研究
  • 批准号:
    52111540161
  • 批准年份:
    2021
  • 资助金额:
    3 万元
  • 项目类别:
水压力下诱发地震动机理模型不确定性量化及修正方法研究
  • 批准号:
    52111530234
  • 批准年份:
    2021
  • 资助金额:
    3.00 万元
  • 项目类别:
水压力下诱发地震动机理模型不确定性量化及修正方法研究
  • 批准号:
    5211101251
  • 批准年份:
    2021
  • 资助金额:
    0.00 万元
  • 项目类别:
    国际(地区)合作与交流项目
强震过程巨型滑坡超孔隙水压力累积与激发作用研究
  • 批准号:
    41907254
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
地震与随机波流激励下悬浮隧道及其锚索的耦合动力学分析
  • 批准号:
    51808136
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Innovative Numerical Theory for Structural Seismic Response Analysis Using Principal Stress Coordinates
使用主应力坐标进行结构地震响应分析的创新数值理论
  • 批准号:
    23H00199
  • 财政年份:
    2023
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Proposal: Testing Collision Versus Frictional Stress-Drop Models of High-Frequency Earthquake Ground Motions
合作提案:测试高频地震地面运动的碰撞与摩擦应力降模型
  • 批准号:
    2231705
  • 财政年份:
    2022
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Continuing Grant
EAR-PF: Are large earthquakes like small earthquakes? Using synthetic earthquakes to resolve discrepancies in observations of earthquake stress drop magnitude-invariance
EAR-PF:大地震和小地震一样吗?
  • 批准号:
    2204102
  • 财政年份:
    2022
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Fellowship Award
Collaborative Proposal: Testing Collision Versus Frictional Stress-Drop Models of High-Frequency Earthquake Ground Motions
合作提案:测试高频地震地面运动的碰撞与摩擦应力降模型
  • 批准号:
    2146687
  • 财政年份:
    2022
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Continuing Grant
Non-destructive evaluation of 3D plastic strain and residual stress distributions induced by earthquakes using non-linear inverse analysis
使用非线性反演分析对地震引起的 3D 塑性应变和残余应力分布进行无损评估
  • 批准号:
    22K03831
  • 财政年份:
    2022
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了