Collaborative Research: Bridging the gap between long- and short- wavelength structure in the mantle

合作研究:弥合地幔长波长和短波长结构之间的差距

基本信息

项目摘要

Images of the Earth?s interior are primarily produced by two types of techniques providing snapshots of the Earth at two end-members of resolution. (1) Tomographic imaging provides a whole-mantle view of Earth?s large-scale ( 2000-5000 km) seismic velocity anomalies; (2) Waveform modeling provides a small-scale (~100-500 km) view for specific geographic locations. Because the scale length of features resolved in these imaging techniques varies by an order of magnitude it remains challenging to reconcile these different pictures into one single model of the Earth?s interior. This project aims to reconcile the disparities observed in these images by: (1) Analyzing new seismic data recorded in North America from Earthscope?s Transportable Array (TA) and FlexArray deployments, ANSS Backbone stations, Canadian National Seismic Network Stations, and recent PASSCAL deployments; (2) Analyzing global- and regional-scale models previously introduced to the community by full waveform modeling techniques using the PSVaxi software. The primary goals are to assess the accuracy of the global and regional scale seismic models, and to decipher how complex structures in the deep mantle at all spatial scales affect broadband seismic waveforms.Seismological modeling of deep mantle structure is crucial in understanding the dynamic processes taking place within the Earth. This project will further develop software that is capable of simulating earthquake motions on the global scale. Ultimately this will aid in elucidating the Earth?s interior structure by comparing the simulated waveforms with the newly recorded data. They will test the validity of previously derived Earth models, assessing how structural features in the deep mantle affect the seismic waveforms. Ultimately, this will provide valuable waveform propagation tools and a rigorous assessment of the accuracy of seismic models and images to the community.
地球内部的图像主要是由两种类型的技术产生的,这些技术在两个末端的分辨率下提供了地球的快照。 (1)层析成像提供了地球大规模(2000-5000 km)地震速度异常的全面视图; (2)波形建模为特定地理位置提供了一个小规模(〜100-500 km)的视图。 由于这些成像技术中解决的特征的比例长度因数量级而变化,因此将这些不同图片调和成地球内部单一模型仍然具有挑战性。 该项目旨在通过以下方式调和这些图像中观察到的差异,(1)分析北美记录的新地震数据,从Earthscope的可运输阵列(TA)和Flexarray部署,ANSS骨干站,加拿大国家地震网站以及最近的Passcal部署; (2)分析以前通过使用PSVAXI软件的全波形建模技术引入社区的全球和区域规模模型。 主要目标是评估全球和区域尺度的地震模型的准确性,并破译所有空间尺度上深层中的复杂结构如何影响宽带地震波形。深层地幔结构的视质模型对于理解地球内发生的动态过程至关重要。 该项目将进一步开发能够在全球范围内模拟地震动作的软件。 最终,这将通过将模拟波形与新记录的数据进行比较,有助于阐明地球的内部结构。 他们将测试先前衍生的地球模型的有效性,并评估深幔中的结构特征如何影响地震波形。 最终,这将为社区提供宝贵的波形传播工具,并对地震模型和图像的准确性进行严格的评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeroen Ritsema其他文献

Radial Q<sub>μ</sub> structure of the lower mantle from teleseismic body-wave spectra
  • DOI:
    10.1016/j.epsl.2011.01.023
  • 发表时间:
    2011-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yong Keun Hwang;Jeroen Ritsema
  • 通讯作者:
    Jeroen Ritsema
New USArray observations of 100-km scale, layered scattering structures
USArray 对 100 公里尺度层状散射结构的新观测
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeroen Ritsema;Satoshi Kaneshima;Sam Haugland
  • 通讯作者:
    Sam Haugland

Jeroen Ritsema的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeroen Ritsema', 18)}}的其他基金

Constraining earthquake stress drop and mantle attenuation from teleseismic body-wave spectra
从远震体波谱中约束地震应力降和地幔衰减
  • 批准号:
    2019379
  • 财政年份:
    2020
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Standard Grant
Do thermochemical convection models explain wave propagation and scattering?
热化学对流模型可以解释波传播和散射吗?
  • 批准号:
    1644829
  • 财政年份:
    2017
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Continuing Grant
What are the seismic expressions of deep thermal and thermochemical plumes?
深部热羽流和热化学羽流的地震表达是什么?
  • 批准号:
    1565511
  • 财政年份:
    2016
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Standard Grant
An analysis of upper mantle discontinuity structure using 3D synthetics and global network data
使用 3D 合成和全球网络数据分析上地幔不连续结构
  • 批准号:
    1416695
  • 财政年份:
    2014
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Continuing Grant
GeoPRISMS Office Support
GeoPRISMS 办公室支持
  • 批准号:
    1339783
  • 财政年份:
    2013
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: Surface wave and body wave modeling of attenuation in the mantle transition zone
合作研究:地幔过渡区衰减的表面波和体波建模
  • 批准号:
    0944167
  • 财政年份:
    2011
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Standard Grant
10th International Workshop on the Modeling of Mantle Convection; Carry-le-Rouet, France; September, 2007
第十届地幔对流模拟国际研讨会;
  • 批准号:
    0731606
  • 财政年份:
    2007
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Standard Grant
Interrogation of global seismic models with 3D wave simulations
通过 3D 波模拟询问全球地震模型
  • 批准号:
    0609763
  • 财政年份:
    2006
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Continuing Grant
Utilizing Permanent and Temporary Broadband Regional Networks to Refine Seismic Models of the Lower Mantle
利用永久和临时宽带区域网络完善下地幔地震模型
  • 批准号:
    9896210
  • 财政年份:
    1998
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Standard Grant
Utilizing Permanent and Temporary Broadband Regional Networks to Refine Seismic Models of the Lower Mantle
利用永久和临时宽带区域网络完善下地幔地震模型
  • 批准号:
    9706663
  • 财政年份:
    1997
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Standard Grant

相似国自然基金

CGRP神经肽通过N-cadherin趋化筋膜成纤维细胞“桥接式牵引”MFUS促进皮肤再生的机制研究
  • 批准号:
    82372550
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
环境—荷载作用下UHPC梁多裂缝动态扩展机制与纤维桥接量化理论研究
  • 批准号:
    52308129
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于O-GlcNAc糖基化—HIF-1α桥接FAO途径探讨黄葵素“清利和络”改善DKD肾纤维化的机制研究
  • 批准号:
    82205025
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于O-GlcNAc糖基化—HIF-1α桥接FAO途径探讨黄葵素“清利和络”改善DKD肾纤维化的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多参量光场调制的高速并行激光三维光子桥接技术研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
  • 批准号:
    2425965
  • 财政年份:
    2024
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Bridging the scale gap between local and regional methane and carbon dioxide isotopic fluxes in the Arctic
合作研究:缩小北极当地和区域甲烷和二氧化碳同位素通量之间的规模差距
  • 批准号:
    2427291
  • 财政年份:
    2024
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: Education DCL: EAGER: Redefining Cybersecurity Education for Criminal Justice Professionals: Bridging the Gap in National Cyber Capabilities
合作研究:教育 DCL:EAGER:重新定义刑事司法专业人员的网络安全教育:缩小国家网络能力的差距
  • 批准号:
    2334196
  • 财政年份:
    2023
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Bridging Research and Visualization Design Practice via a Sustainable Knowledge Platform
合作研究:HCC:小型:通过可持续知识平台桥接研究和可视化设计实践
  • 批准号:
    2147044
  • 财政年份:
    2023
  • 资助金额:
    $ 20.92万
  • 项目类别:
    Standard Grant
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
  • 批准号:
    10572539
  • 财政年份:
    2023
  • 资助金额:
    $ 20.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了