Collaborative Research: Moving with muscles vs. springs: evolutionary biomechanics of extremely fast, small systems

合作研究:肌肉运动与弹簧运动:极快、小型系统的进化生物力学

基本信息

  • 批准号:
    2019314
  • 负责人:
  • 金额:
    $ 0.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Movement in biology is most often associated with motor-like mechanisms, such as muscle contractions in animals or hydraulics in plants. However, organisms have another option for generating movement: they can use motor-like mechanisms to load energy into elastic structures, such that pre-loaded, rubber band-like elastic structures generate the movement, instead of motors. Latch-mediated spring actuation generates movement largely or exclusively using stored elastic energy and incorporates latches to mediate energy release, much like controlled release of a coiled spring. This research examines how the size of an organism may determine whether movement is driven by stored elastic energy or direct motor action. Addressing this topic will improve understanding of fundamental physical limits on biological systems and how those limits influence development and evolution. Biological latch-mediated spring actuation generates among the fastest movements ever recorded, which exceed the current capabilities of human engineering to produce extremely fast movements in small, reusable devices. The discoveries from this research can help develop novel engineering devices and materials. This interdisciplinary team of research labs spans biology, physics, and materials science, and will train undergraduate, graduate, and postdoctoral researchers across four colleges and universities. The research activities will engage the broader public through a Research Experience for Teachers program each summer, alongside expansion of the Muser software program, which helps diverse undergraduates access research experiences in an equitable and transparent way. Latch-mediated spring actuation uses materials, not motors, to generate extremely fast movement in small systems. Energy is loaded into materials prior to movement and latches control loading and release of energy. This research examines the transitions between motor-driven and spring-driven movement within and across organisms. Across growth and development within species, experiments and modeling will test how mantis shrimp (Stomatopoda) maintain their mechanical capabilities and exhibit transitions between motor- and spring-driven movement across eight orders of magnitude of accelerated mass - a key predictor of the physics-based transition between effective motor- and spring-driven movement in any system. Across mantis shrimp species, variation in spring and latch components will be analyzed through statistical comparisons of the tempo (rate of evolutionary change) and mode (pattern of evolutionary change) to establish the key biomechanical factors limiting and promoting evolutionary diversification. Across the tree of life, the influence of accelerated mass and materials on origins and diversification will be tested using phylogenetic comparative analyses. Variation, transitions, and tuning of these mechanisms are informative for engineers designing small, fast, re-usable mechanisms at these extreme spatial and temporal scales. Undergraduates, graduate students, and a postdoctoral researcher will receive interdisciplinary training across the four labs. A Research Experience for Teachers program will provide interdisciplinary research experience and course development centered on these inherently engaging systems. The researchers will use, promote, and develop an open access software platform called Muser which is designed to enhance access and equity for undergraduate research experience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物学中的运动通常与类似运动的机制相关,例如动物的肌肉收缩或植物的液压。 然而,生物体有另一种产生运动的选择:它们可以使用类似马达的机制将能量加载到弹性结构中,这样预加载的橡皮筋状弹性结构代替马达产生运动。闩锁介导的弹簧致动主要或专门使用存储的弹性能产生运动,并结合闩锁来介导能量释放,就像螺旋弹簧的受控释放一样。 这项研究探讨了生物体的大小如何决定运动是由储存的弹性能量还是直接运动驱动。解决这个主题将增进对生物系统基本物理限制以及这些限制如何影响发育和进化的理解。 生物闩锁介导的弹簧致动产生了有史以来最快的运动之一,这超出了人类工程学目前在小型可重复使用的设备中产生极快运动的能力。这项研究的发现有助于开发新型工程设备和材料。这个跨学科的研究实验室团队涵盖生物学、物理学和材料科学,并将培训四所学院和大学的本科生、研究生和博士后研究人员。研究活动将通过每年夏天的教师研究体验计划吸引更广泛的公众,同时扩展 Muser 软件计划,帮助不同的本科生以公平和透明的方式获得研究经验。闩锁介导的弹簧致动使用材料而不是电机在小型系统中产生极快的运动。能量在运动之前加载到材料中,并且锁存器控制能量的加载和释放。这项研究研究了生物体内部和跨生物体的电机驱动运动和弹簧驱动运动之间的转变。在物种内的生长和发育过程中,实验和建模将测试螳螂虾(口足纲)如何保持其机械能力,并在八个数量级的加速质量上展示电机驱动运动和弹簧驱动运动之间的转换——这是基于物理的关键预测因子在任何系统中有效的电机驱动运动和弹簧驱动运动之间的过渡。通过对节奏(进化变化速率)和模式(进化变化模式)的统计比较,对螳螂虾物种的弹簧和闩锁成分的变化进行分析,以确定限制和促进进化多样化的关键生物力学因素。在整个生命之树中,加速质量和材料对起源和多样化的影响将使用系统发育比较分析进行测试。这些机制的变化、转换和调整对于工程师在这些极端的空间和时间尺度上设计小型、快速、可重复使用的机制来说是有用的。本科生、研究生和博士后研究员将在四个实验室接受跨学科培训。教师研究经验计划将提供以这些固有的吸引力系统为中心的跨学科研究经验和课程开发。研究人员将使用、推广和开发一个名为 Muser 的开放获取软件平台,该平台旨在增强本科生研究经验的获取和公平性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和知识进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alfred Crosby其他文献

Alfred Crosby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alfred Crosby', 18)}}的其他基金

EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
  • 批准号:
    2218119
  • 财政年份:
    2022
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Standard Grant
Polymer Adhesion at Extreme Rates and Temperatures
极端速率和温度下的聚合物粘合力
  • 批准号:
    2104410
  • 财政年份:
    2021
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Structure-Mechanics Relationships for Ultra-thin Block Copolymer Films
合作研究:超薄嵌段共聚物薄膜的结构-力学关系
  • 批准号:
    1904525
  • 财政年份:
    2019
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlling Microstructure in Resilin-based Hydrogels: Linking Microscale Mechanical Properties to Behavior
合作研究:控制树脂基水凝胶的微观结构:将微观机械性能与行为联系起来
  • 批准号:
    1609940
  • 财政年份:
    2016
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Standard Grant
Quantifying the Polymer Physics of Mechanical Deformation in Ultra-thin Polymer Glasses
量化超薄聚合物玻璃机械变形的聚合物物理
  • 批准号:
    1608614
  • 财政年份:
    2016
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Continuing Grant
Size Dependent Mechanical Properties for Elastic Polymer Gels
弹性聚合物凝胶的尺寸依赖性机械性能
  • 批准号:
    1304724
  • 财政年份:
    2013
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Continuing Grant
2013 Macromolecular Materials Conference and Seminar
2013年高分子材料会议暨研讨会
  • 批准号:
    1241983
  • 财政年份:
    2012
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Standard Grant
Controlled Crumpling of Polymer Thin Films and Nanocomposites
聚合物薄膜和纳米复合材料的受控皱缩
  • 批准号:
    0907219
  • 财政年份:
    2009
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Continuing Grant
Symposium on Polymer Surfaces and Interfaces, Chicago, Illinois, March 25-29, 2007
聚合物表面和界面研讨会,伊利诺伊州芝加哥,2007 年 3 月 25-29 日
  • 批准号:
    0704222
  • 财政年份:
    2006
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Standard Grant
MRI: Aquisition of Nano-Imprint Lithography System
MRI:获得纳米压印光刻系统
  • 批准号:
    0521074
  • 财政年份:
    2005
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Standard Grant

相似国自然基金

面向复杂应急区域的移动基站信号覆盖问题研究
  • 批准号:
    72301209
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
孤独症儿童与其父母社会融入主客体互倚作用机制及移动健康管理模式研究
  • 批准号:
    72304096
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CXCL14/c-JUN正反馈轴在牙移动中调节牙周膜细胞成骨关键亚群定向迁移和成骨分化的机制研究
  • 批准号:
    82370998
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
虚拟环境下基于肢体姿势交互的虚拟移动技术研究
  • 批准号:
    62372212
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
质子转移动力学介导氧还原制双氧水反应机制及器件应用研究
  • 批准号:
    22308387
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Moving mountains: timing and emplacement of the Marysvale gravity slide complex
合作研究:移动山脉:马里斯维尔重力滑梯综合体的时间和位置
  • 批准号:
    2412838
  • 财政年份:
    2023
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing turbidity currents: moving sources, polydispersity and aggregation
合作研究:推进浊流:移动源、多分散性和聚集
  • 批准号:
    2139277
  • 财政年份:
    2022
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing turbidity currents: moving sources, polydispersity and aggregation
合作研究:推进浊流:移动源、多分散性和聚集
  • 批准号:
    2138583
  • 财政年份:
    2022
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
  • 批准号:
    2227080
  • 财政年份:
    2022
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
  • 批准号:
    2108072
  • 财政年份:
    2021
  • 资助金额:
    $ 0.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了