MRI: Acquisition of FASTER - Fostering Accelerated Sciences Transformation Education and Research

MRI:收购 FASTER - 促进加速科学转型教育和研究

基本信息

  • 批准号:
    2019129
  • 负责人:
  • 金额:
    $ 309万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The project funds the acquisition of a composable high-performance data-analysis and computing instrument, named FASTER (Fostering Accelerated Scientific Transformations, Education, and Research). FASTER will enable transformative advances in scientific fields that rely on artificial intelligence and machine learning (AI/ML) techniques, big data practices, and high-performance computing (HPC) technologies. The FASTER platform removes significant bottlenecks in research computing by leveraging a technology that can dynamically allocate resources to support workflows. It will support researchers from across the Texas A&M University System and their collaborating institutions. Thirty percent of FASTER’s computing resources will also be allocated to researchers nationwide by the National Science Foundation (NSF) XSEDE (Extreme Science and Engineering Discovery Environment) program. FASTER’s composable interface allows it to simultaneously support both emerging and traditional workloads in research computing. Transformative research projects benefiting from FASTER will include the development of AI/ML models, cybersecurity, health population informatics, genomics, bioinformatics, computer-aided drug design, agricultural sciences, life sciences, oil and gas simulations, de novo materials design, climate modeling, multi-scale simulations, quantum computing architectures, biomedical imaging, geosciences, and quantum chemistry. In addition to supporting a wide-range of fields of research, the project contributes to code development, education, and the workforce development goals of several NSF Big Ideas.FASTER adopts the innovative Liqid composable software-hardware approach combined with cutting-edge technologies such as state of the art CPUs and GPUs, NVMe (Non-Volatile Memory Express) based storage, and thigh speed interconnect. Workflows on FASTER will be able to dynamically integrate disaggregated GPUs and NVMe to compose a single node, allowing them to scale beyond traditional hardware limits. The composable and configurable techniques will allow researchers to use resources efficiently, enabling more science. Best practices gathered from managing the resource will be shared with the community. FASTER will coordinate a three-pronged effort to effectively broaden participation in computing by focusing on training, education and outreach. FASTER will leverage existing efforts that promote STEM (Science, Technology, Engineering and Mathematics) and broaden participation in computing at the K-12, collegiate, and professional levels to have a transformative impact nationally. FASTER activities are designed to expand the participation of traditionally underrepresented groups in computing and STEM, particularly at minority-serving institutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目资助了一个可组合的高性能数据分析和计算工具的获取,该工具被称为更快(促进加速的科学转型,教育和研究)。更快的速度将在依赖人工智能和机器学习(AI/ML)技术,大数据实践和高性能计算(HPC)技术的科学领域中实现变革性进步。更快的平台通过利用可以动态分配资源来支持工作流程的技术来消除研究计算中的重要瓶颈。它将支持来自德克萨斯A&M大学系统及其合作机构的研究人员。国家科学基金会(NSF)XSEDE(极端的科学与工程发现环境)计划,更快的计算资源的30%也将在全国范围内分配给全国研究人员。 FASTER’s composable interface allows it to Transformative research projects benefiting from FASTER will include the development of AI/ML models, cybersecurity, health population informatives, genomics, bioinformatics, computer-aided drug design, agricultural sciences, life sciences, oil and gas simulations, de novo materials design, climate modeling, multi-scale simulations, quantum computing architectures, biomedical imaging,地球科学和量子化学。除了支持广泛的研究领域外,该项目还为代码开发,教育以及几个NSF大思想的劳动力发展目标做出了贡献。Faster采用创新的液化液化式软件软件方法,结合了最先进的技术与ART CPU和GPUS和GPUS,NVME,NVME(NOR-VOLATILIE MEMORYE SESTICTER)等最先进的技术相结合。更快的工作流将能够动态整合分开的GPU和NVME以组成一个节点,从而使它们可以超越传统硬件限制。可组合和可配置的技术将使研究人员能够有效地使用资源,从而实现更多的科学。从管理资源中获得的最佳实践将与社区共享。更快的速度将通过专注于培训,教育和外展来协调三方面的努力,以有效地扩大计算的参与。更快的速度将利用促进STEM(科学,技术,工程和数学)的现有努力,并扩大了K-12,大学和专业水平的计算参与,以在全国范围内产生变革性的影响。更快的活动旨在扩大传统上代表性不足的团体参与计算和STEM的参与,尤其是在少数派服务机构中。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子的优点和更广泛的影响来审查标准,通过评估来评估。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regional Collaborations Supporting Cyberinfrastructure-Enabled Research During a Pandemic: The Structure and Support Plan of the SWEETER CyberTeam
大流行期间支持网络基础设施研究的区域合作:SWEETER Cyber​​Team 的结构和支持计划
Benchmarking the Performance of Accelerators on National Cyberinfrastructure Resources for Artificial Intelligence / Machine Learning Workloads
  • DOI:
    10.1145/3491418.3530772
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abhinand Nasari;Hieu Hanh Le;Richard Lawrence;Zhenhua He;Xin Yang;Mario Krell;A. Tsyplikhin;M. Tatineni;Tim Cockerill;Lisa M. Perez;Dhruva K. Chakravorty;Honggao Liu
  • 通讯作者:
    Abhinand Nasari;Hieu Hanh Le;Richard Lawrence;Zhenhua He;Xin Yang;Mario Krell;A. Tsyplikhin;M. Tatineni;Tim Cockerill;Lisa M. Perez;Dhruva K. Chakravorty;Honggao Liu
Expanding the Reach of Research Computing: A Landscape Study: Pathways Bringing Research Computing to Smaller Universities and Community Colleges
扩大研究计算的范围:景观研究:将研究计算引入小型大学和社区学院的途径
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Honggao Liu其他文献

Comprehensive quality evaluation of dried boletus slices based on fingerprinting and chemometrics
  • DOI:
    10.1016/j.jpba.2024.116505
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zhiyi Ji;Honggao Liu;Jieqing Li;Yuanzhong Wang
  • 通讯作者:
    Yuanzhong Wang
Numerical studies of reactive polymer flows in porous materials
多孔材料中反应性聚合物流动的数值研究
  • DOI:
    10.31390/gradschool_dissertations.1065
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Honggao Liu
  • 通讯作者:
    Honggao Liu
Data fusion of FT-NIR and ATR-FTIR spectra for accurate authentication of geographical indications for <em>Gastrodia elata</em> Blume
  • DOI:
    10.1016/j.fbio.2023.103308
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chuanmao Zheng;Jieqing Li;Honggao Liu;Yuanzhong Wang
  • 通讯作者:
    Yuanzhong Wang
Numerical modeling of reactive polymer flow in porous media
多孔介质中反应性聚合物流动的数值模拟
  • DOI:
    10.1016/s0098-1354(02)00130-8
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Honggao Liu;K. Thompson
  • 通讯作者:
    K. Thompson
Cybersecurity and Data Science Curriculum for Secondary Student Computing Programs
中学生计算机课程的网络安全和数据科学课程
  • DOI:
    10.22369/issn.2153-4136/14/2/2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Lawrence;Zhenhua He;Dhruva K. Chakravorty;Wesley Brashear;Honggao Liu;S. Nite;Lisa M. Perez;Chris P. Francis;Nikhil Dronamraju;Xin Yang;Taresh Guleria;Jeeeun Kim
  • 通讯作者:
    Jeeeun Kim

Honggao Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Honggao Liu', 18)}}的其他基金

Category II: ACES - Accelerating Computing for Emerging Sciences
类别 II:ACES - 加速新兴科学的计算
  • 批准号:
    2112356
  • 财政年份:
    2021
  • 资助金额:
    $ 309万
  • 项目类别:
    Cooperative Agreement
CC-NIE Network Infrastructure: CADIS -- Cyberinfrastructure Advancing Data-Interactive Sciences
CC-NIE 网络基础设施:CADIS——推动数据交互科学的网络基础设施
  • 批准号:
    1246443
  • 财政年份:
    2013
  • 资助金额:
    $ 309万
  • 项目类别:
    Standard Grant
HPCOPS: The LONI Grid - Leveraging HPC Resources of the Louisiana Optical Network Initiative for Science and Engineering Research and Education
HPCOPS:LONI 网格 - 利用路易斯安那光网络计划的 HPC 资源进行科学和工程研究与教育
  • 批准号:
    0710874
  • 财政年份:
    2007
  • 资助金额:
    $ 309万
  • 项目类别:
    Cooperative Agreement

相似国自然基金

氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
  • 批准号:
    32371616
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高磁感取向硅钢表面氧化层内传质与获得抑制剂演变机理研究
  • 批准号:
    52374316
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
线粒体三羧酸循环酶入核调控小鼠二细胞期全能性获得的功能和机制研究
  • 批准号:
    32300608
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社区获得性MRSA家庭传播动态及干预措施的Ross-Macdonald动力学模型仿真研究
  • 批准号:
    82360657
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
核糖体蛋白RPL35A调节FOXO1与SIRT2乙酰化解离诱导自噬促进非小细胞肺癌发生发展及获得性耐药的机制研究
  • 批准号:
    82360461
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

EA: Acquisition of analytical equipment for environmental biogeochemistry and mineralogy
EA:购置环境生物地球化学和矿物学分析设备
  • 批准号:
    2323242
  • 财政年份:
    2024
  • 资助金额:
    $ 309万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Aspect and Event Cognition in the Acquisition and Processing of a Second Language
博士论文研究:第二语言习得和处理中的方面和事件认知
  • 批准号:
    2337763
  • 财政年份:
    2024
  • 资助金额:
    $ 309万
  • 项目类别:
    Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338394
  • 财政年份:
    2024
  • 资助金额:
    $ 309万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
  • 批准号:
    2335955
  • 财政年份:
    2024
  • 资助金额:
    $ 309万
  • 项目类别:
    Standard Grant
EA/Ed: Acquisition of a carbon dioxide and methane Cavity Ringdown Spectrometer for education and research
EA/Ed:购买二氧化碳和甲烷腔衰荡光谱仪用于教育和研究
  • 批准号:
    2329285
  • 财政年份:
    2024
  • 资助金额:
    $ 309万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了