Collaborative Research: Understanding Sulfur-Carbon-Solid Electrolyte Interface of Lithium/Sulfur Solid-State Batteries

合作研究:了解锂/硫固态电池的硫-碳-固体电解质界面

基本信息

项目摘要

In recent years, there has been a significant movement towards using electric vehicles (EVs) as a more sustainable form of transportation. Continuous innovation of rechargeable batteries that supply power to an electric motor is required to boost the adoption of EVs since the battery significantly affects the driving range, safety, and cost of EVs. A lithium/sulfur (Li/S) battery consisting of a lithium metal anode and sulfur cathode is a promising candidate for EV applications as it has the potential for a five-times longer driving distance at a given weight of the EV battery compared to conventional lithium-ion batteries. The major challenges towards the development of reliable and safe Li/S batteries are 1) the need to mitigate problematic issues associated with chemical compounds called lithium polysulfides, which are formed in the organic liquid electrolyte during battery operation, and 2) the flammable ionic conductor used as electrolyte. A Li/S solid-state battery is a promising system for overcoming these issues because it uses a solid-state electrolyte which is non-flammable and can prevent polysulfide formation better than liquid electrolytes. However Li/S solid-state batteries suffer from poor energy storage/delivery performance due to an insufficient understanding of the electrode-solid electrolyte interface. This project will conduct fundamental studies on the interfaces in Li/S solid-state batteries, advanced materials characterization methods, and implement rational electrode design to address these challenges. The results from this project will create new knowledge that can enable energy storage solutions to meet the U.S.’s mission toward decarbonizing the global automotive sector and shaping the sustainable energy future. Comprehensive education and workforce development plans are laid out through a seamless partnership between Arizona State University and the University of Michigan Ann Arbor. Training graduate and undergraduate students via this research project will significantly contribute to the mission of both universities mission to become a hotbed of energy technologies.The overarching goal of this project is to improve the understanding of the electrochemical processes taking place in Li/S composite cathodes employing garnet-type lithium lanthanum zirconium oxide (Li7La3Zr2O12, LLZO) as a solid electrolyte. The research will focus on: 1) Obtaining an improved understanding of the reaction mechanisms in Li/S composite cathodes using model systems, electroanalytical techniques, and in operando/ex-situ X-ray analyses, 2) Elucidation of fundamental thermodynamic and kinetic parameters influential in the electrochemical processes of sulfur, and 3) Investigation of design parameters such as particle size, morphology, surface properties, and mass loading of components in the sulfur/solid state electrolyte composite cathode. Enabled by the collaborative research team’s expertise in Li/S cell chemistry, solid-state battery technology, and synchrotron-based in-situ/operando characterization, this project will result in a comprehensive methodology for investigating and designing sustainable, next-generation energy storage systems. The results of the project will lead to the innovative design of S-LLZO composite cathodes, which is favorable for fast and sustainable electrochemical processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,电动汽车 (EV) 作为一种更可持续的交通方式出现了重大趋势,因为电池会影响电动汽车的使用,因此需要不断创新为电动机供电的可充电电池。由锂金属阳极和硫阴极组成的锂/硫(Li/S)电池是电动汽车应用的一个有前途的候选者,因为它的使用寿命有五倍的潜力。与传统锂离子电池相比,电动汽车电池在给定重量下的行驶距离 开发可靠且安全的锂/硫电池的主要挑战是 1) 需要缓解与多硫化锂化合物相关的问题。电池运行期间在有机液体电解质中形成,2)用作电解质的易燃离子导体Li/S固态电池是克服这些问题的有前途的系统,因为它使用固态电解质。锂/硫固态电池不易燃,并且可以比液体电解质更好地防止多硫化物的形成,但由于对电极-固体电解质界面的了解不足,锂/硫固态电池的储能/传输性能较差。该项目的结果将创造新的知识,使储能解决方案能够满足美国脱碳的使命。亚利桑那州立大学和密歇根大学安娜堡分校之间的无缝合作伙伴关系制定了全面的教育和劳动力发展计划,通过该研究项目培训研究生和本科生将为全球汽车行业和塑造可持续能源的未来做出重大贡献。两所大学的使命是成为能源技术的温床。该项目的总体目标是提高对采用石榴石型锂镧锆氧化物的 Li/S 复合阴极中发生的电化学过程的理解(Li7La3Zr2O12,LLZO)作为固体电解质,研究重点是:1)利用模型系统、电分析技术和原位/异位 X 射线分析,更好地了解 Li/S 复合阴极的反应机制。 , 2) 阐明对硫的电化学过程有影响的基本热力学和动力学参数,以及 3) 研究设计参数,如颗粒尺寸、形态、表面该项目通过合作研究团队在锂/硫电池化学、固态电池技术和基于同步加速器的原位/操作表征方面的专业知识来实现​​。将产生用于研究和设计可持续的下一代储能系统的综合方法。该项目的结果将导致 S-LLZO 复合阴极的创新设计,这有利于快速和可持续的电化学。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Penner-Hahn其他文献

James Penner-Hahn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Penner-Hahn', 18)}}的其他基金

IDBR: Development of an x-ray flow cytometer for single cell metal analysis
IDBR:开发用于单细胞金属分析的 X 射线流式细胞仪
  • 批准号:
    0852802
  • 财政年份:
    2009
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Standard Grant
A Fermentation and Cell Collection Facility at the University of Michigan
密歇根大学的发酵和细胞收集设施
  • 批准号:
    9970145
  • 财政年份:
    1999
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Standard Grant

相似国自然基金

面向开放场景的多模态视频表征与理解研究
  • 批准号:
    62376069
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向真实场景的基于人体关节点的行为理解研究
  • 批准号:
    62302093
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模态数学问题理解和类人解答方法研究
  • 批准号:
    62376012
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于脉冲神经元内在可塑性建模的类脑智能交互意图理解研究
  • 批准号:
    62376261
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318851
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349883
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了