Elucidating how microtubule-microtubule interactions drive the dynamic reorganization of the microtubule cytoskeleton

阐明微管-微管相互作用如何驱动微管细胞骨架的动态重组

基本信息

  • 批准号:
    2018661
  • 负责人:
  • 金额:
    $ 105.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Microtubules are cellular polymers that build a variety of essential structures inside of cells where they provide a major component of a cell’s cytoskeletal network. Dynamic microtubule arrangements and rearrangements define cell shape, provide tracks for intracellular transport, and drive cell division and motility. Thus, active remodeling of the microtubule cytoskeleton is vital for cellular function. In recent years, biochemical studies of microtubules and their associated proteins have provided important insight into the molecular mechanisms underlying the dynamics of individual microtubule polymers. However, the rules governing how individual microtubules interact to give rise to dynamically-evolving cytoskeletal network architectures are still largely unknown. This project will employ a multidisciplinary approach to elucidate how microtubule-microtubule interactions encode the remodeling of the microtubule network, specifically focusing on migrating cells. The ability to reconstitute and manipulate the dynamic architecture of cytoskeletal ensembles will ultimately allow the control of cellular behavior, as well as the future development of biologically-inspired active materials. The project will provide for a diverse interdisciplinary training of undergraduate and graduate students and additional outreach efforts will be carried out in local schools and a science museum.The goal of this research is to elucidate the role of microtubule-microtubule interactions in the dynamic remodeling of the microtubule cytoskeleton, with a particular focus on microtubule network organization in the context of cell migration. The hypothesis is that nodes of microtubule-microtubule interactions serve as focal points for network remodeling, providing encoded microdomains for localized protein activity, and endowing the network with enhanced resistance to a variety of perturbations. To test this hypothesis, this project will combine cellular studies with in vitro reconstitution approaches and computational modeling. State-of-the-art imaging will be used to determine the properties of microtubule interaction nodes, as a function of angle, protein localization and microtubule dynamics parameters in the lamella of epithelial (LLC-PK1) and migrating (B16 melanoma) cells. In vitro, microtubule interactions will be reconstituted in the presence of distinct classes of microtubule-associated-proteins (MAPs) that target and regulate microtubule end dynamics, stabilize the microtubule polymer lattice, and induce polymer damage and severing. The network topology will be controlled using micropatterning techniques; biochemical and mechanical perturbations will be exerted using microfluidics and laser severing; and ensemble behavior will be modeled using computational simulations. Predictions obtained using in silico and in vitro approaches will be directly tested by observations of microtubule interactions in cells. Together, these approaches will uncover the interplay of biochemistry, mechanics and dynamics in a physiologically-relevant context. In addition to the immediate relevance for understanding cellular processes such as cell motility and neuronal growth cone guidance, the mechanisms identified here will be broadly important in the developmental context, where cytoskeleton-driven morphological changes define multicellular tissue and organ structures through the process of differentiation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微管是细胞内构建各种重要结构的细胞聚合物,它们提供细胞骨架网络的主要组成部分,动态微管排列和重排定义细胞形状,提供细胞内运输的轨道,并驱动细胞分裂和运动。微管细胞骨架的主动重塑对于细胞功能至关重要近年来,微管及其相关蛋白的生化研究为了解个体微管动力学的分子机制提供了重要的见解。然而,控制单个微管如何相互作用以产生动态进化的细胞骨架网络结构的规则仍然很大程度上未知,该项目将采用多学科方法来阐明微管-微管相互作用如何编码微管网络的重塑。重建和操纵细胞骨架整体的动态结构的能力最终将允许控制细胞行为,以及受生物启发的活性材料的未来发展。该项目将为本科生和研究生提供多样化的跨学科培训,并将在当地学校和科学博物馆开展额外的外展工作。这项研究的目标是阐明微管-微管相互作用在动态重塑中的作用微管细胞骨架,特别关注细胞迁移背景下的微管网络组织,假设微管-微管相互作用的节点作为网络重塑的焦点,为局部蛋白质提供编码的微结构域。为了测试这一假设,该项目将结合细胞研究和体外重建方法,并使用最先进的成像技术来确定其特性。微管相互作用节点,作为上皮细胞 (LLC-PK1) 和迁移细胞 (B16 黑色素瘤) 细胞层中角度、蛋白质定位和微管动力学参数的函数。在不同类别的微管相关蛋白(MAP)的存在下进行重构,这些微管相关蛋白(MAP)靶向并调节微管末端动力学,稳定微管聚合物晶格,并诱导聚合物损伤和切断。将使用微流体和激光切割来施加扰动;并且将使用计算机模拟和体外方法对整体行为进行建模。通过观察细胞中微管相互作用直接进行测试,这些方法除了与理解细胞运动和神经生长锥引导等细胞过程具有直接相关性外,还将揭示生理相关背景下的生物化学、力学和动力学的相互作用。 ,这里确定的机制将在发育背景中广泛重要,其中细胞骨架驱动的形态变化通过分化过程定义多细胞组织和器官结构。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marija Zanic其他文献

Marija Zanic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

最优化与权力如何共同影响社会“内卷”:基于认知过程模型的探讨
  • 批准号:
    32371124
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
汇率制度弹性如何影响宏观经济韧性:理论、实证和政策研究
  • 批准号:
    72303027
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大宗商品如何影响企业资产定价:路径、机制及对策研究
  • 批准号:
    72303171
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
如何应对日趋严重的职场物化?基于员工、组织和数智技术的干预措施研究
  • 批准号:
    72372012
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
菌根栖息地之间的连接性如何影响生态系统的功能
  • 批准号:
    32371721
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

How do cortical microtubules localize on cell cortex? - toward understanding its regulation and evolutionary implications.
皮质微管如何定位在细胞皮质上?
  • 批准号:
    23K05805
  • 财政年份:
    2023
  • 资助金额:
    $ 105.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding how motors drive the pathogenesis in host cells infected with Chlamydia trachomatis.
了解马达如何驱动感染沙眼衣原体的宿主细胞的发病机制。
  • 批准号:
    491115
  • 财政年份:
    2023
  • 资助金额:
    $ 105.77万
  • 项目类别:
    Fellowship Programs
How are mono-oriented chromosome-microtubule attachments protected to prevent errors in mitosis and associated cellular ageing?
如何保护单向染色体微管附着以防止有丝分裂和相关细胞衰老的错误?
  • 批准号:
    BB/W002698/1
  • 财政年份:
    2022
  • 资助金额:
    $ 105.77万
  • 项目类别:
    Research Grant
Recommendations on how medical information management should reflect the values of patients and citizens
关于医疗信息管理如何体现患者和公民价值观的建议
  • 批准号:
    21K10360
  • 财政年份:
    2021
  • 资助金额:
    $ 105.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microtubule bundles in the mitotic spindle: probing how mechanical and functional robustness emerge from molecular architecture
有丝分裂纺锤体中的微管束:探讨分子结构如何产生机械和功能稳健性
  • 批准号:
    10226166
  • 财政年份:
    2020
  • 资助金额:
    $ 105.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了