CDS&E: Nanoconfined Heating via Ultrahigh-repetition-rate Lasers for Enhanced Surface Processing

CDS

基本信息

项目摘要

Pulsed laser processing is a manufacturing method that uses ultrafast laser pulses to precisely fabricate three-dimensional objects. Among the tunable parameters in pulsed laser processing, the laser repetition rate (the number of laser pulses per second) has only recently been recognized as essential for controlling the affected depth of laser ablation, sintering, and melting processes. This depth limit determines the resolution and efficiency of pulsed laser technologies for micro-/nano-electronics and aerospace and nuclear applications. This project aims to explore the minimum achievable depth when the laser repetition rate increases to the giga-/terahertz regime. A set of advanced computational tools will be developed and implemented to understand the laser and materials interactions under extreme conditions. Successful completion of this project will enable confined heating of ultrahigh-repetition-rate lasers to the nanoscale, thereby improving the precision and efficiency of ablation, melting, and sintering of nano-layers at material surfaces. The research team will also develop education programs on thermal transport and laser manufacturing at the extremes to impact and inspire broad audiences, from local K-12 students to students at the University of Nevada, Reno. Open-source code developed from the project will be deployed at nanoHUB.org and accessible to both academia and industry. The overarching goals of this project are to predict and control the depth of the heat-affected zone during ultrahigh-repetition-rate laser processing, to model the unique microstructure behaviors of laser-material interactions under extreme conditions, and to develop and apply advanced thermomechanical models to predict the material responses to laser processing. Specifically, the research team will develop, validate, and share advanced computational models for predicting thermal transport behaviors for a broad range of materials under pulsed laser heating at repetition rates up to the terahertz regime. Moreover, the PIs will develop thermomechanical models—synergizing the power of the phase field method, molecular dynamics, and Boltzmann transport equations—for predicting the poorly understood material behaviors and properties during and after ultrahigh-repetition-rate laser processing. The process-structure-property relations for ultrahigh-repetition-rate laser processing will be established through this project. Such knowledge will enable the development of ultra-precise, fast, and efficient laser manufacturing technologies via nano-confined heating. This project is jointly funded by the Thermal Transport Processes program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
脉冲激光加工是一种利用超快激光脉冲精确制造三维物体的制造方法,在脉冲激光加工的可调参数中,激光重复率(每秒激光脉冲的数量)直到最近才被认为是必不可少的。控制激光烧蚀、烧结和熔化过程的深度,该深度限制决定了微/纳米电子、航空航天和核应用的脉冲激光技术的分辨率和效率。当激光重复率增加到千兆/太赫兹范围时,将开发和实施一套先进的计算工具来了解极端条件下激光和材料的相互作用,该项目的成功完成将实现超高的有限加热。 -重复率激光达到纳米级,从而提高材料表面纳米层的烧蚀、熔化和烧结的精度和效率。研究团队还将开发有关极端热传输和激光制造的教育项目。影响和激励广大受众,从当地 K-12 学生到内华达大学里诺分校的学生,该项目开发的开源代码将部署在 nanoHUB.org 上,供学术界和工业界使用。该项目旨在预测和控制超高重复率激光加工过程中热影响区的深度,模拟极端条件下激光与材料相互作用的独特微观结构行为,并开发和应用先进的热机械模型来预测材料具体来说,研究团队将开发、验证和共享先进的计算模型,用于预测重复率高达太赫兹范围的脉冲激光加热下各种材料的热传输行为。热机械模型——协同相场法、分子动力学和玻尔兹曼输运方程的力量——用于预测超高重复率激光加工期间和之后人们知之甚少的材料行为和特性。通过该项目将建立超高重复率激光加工的工艺-结构-性能关系,这些知识将有助于通过纳米高效加热开发超精密、快速的激光制造技术。热传输过程计划和刺激竞争研究既定计划 (EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Twinning in Hexagonal Close-Packed Materials: The Role of Phase Transformation
六方密堆积材料中的孪生:相变的作用
  • DOI:
    10.3390/met13030525
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zahiri, Amir Hassan;Ombogo, Jamie;Lotfpour, Mehrab;Cao, Lei
  • 通讯作者:
    Cao, Lei
The role of mechanical loading in bcc-hcp phase transition: tension-compression asymmetry and twin formation
机械载荷在 bcc-hcp 相变中的作用:拉压不对称和孪晶形成
  • DOI:
    10.1016/j.actamat.2022.118377
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Amir Hassan Zahiri;Eduardo Vitral;Jamie Ombogo;M. Lotfpour;Lei Cao
  • 通讯作者:
    Lei Cao
Formation of {112¯2} contraction twins in titanium through reversible martensitic phase transformation
通过可逆马氏体相变在钛中形成{112×2}收缩孪晶
  • DOI:
    10.1016/j.scriptamat.2020.113694
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Amir Hassan Zahiri;Jamie Ombogo;Lei Cao
  • 通讯作者:
    Lei Cao
Transformation-induced plasticity in omega titanium
欧米茄钛的相变诱导塑性
  • DOI:
    10.1063/5.0035465
  • 发表时间:
    2021-01-06
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Amir Hassan Zahiri;Jamie Ombogo;T. Ma;Pranay Chakraborty;Lei Cao
  • 通讯作者:
    Lei Cao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yan Wang其他文献

Influence of Preparation Conditions of MIL-88A on Catalytic Degradation of Orange G and Dibutyl Phthalate
MIL-88A制备条件对催化降解Orange G和邻苯二甲酸二丁酯的影响
  • DOI:
    10.2991/icsd-17.2017.3
  • 发表时间:
    2017-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang Jiumei;J. Wan;Yongwen Ma;Yan Wang;Zeyu Guan
  • 通讯作者:
    Zeyu Guan
Physics-Based Compact Model for AlGaN/GaN MODFETs With Close-Formed $I$ – $V$ and $C$ – $V$ Characteristics
基于物理的 AlGaN/GaN MODFET 紧凑模型,具有紧密成形的 $I$ – $V$ 和 $C$ – $V$ 特性
Activation and overexpression of PARP-1 in circulating mononuclear cells promote TNF-alpha and IL-6 expression in patients with unstable angina.
循环单核细胞中 PARP-1 的激活和过度表达可促进不稳定型心绞痛患者的 TNF-α 和 IL-6 表达。
  • DOI:
    10.1016/j.arcmed.2008.09.003
  • 发表时间:
    2008-11-01
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    D;an Huang;an;Chongzhe Yang;Lan Yao;Yan Wang;Yuhua Liao;Kai Huang
  • 通讯作者:
    Kai Huang
Rapid and sensitive detection of Listeria monocytogenes by cross-priming amplification of lmo0733 gene.
通过 lmo0733 基因交叉引发扩增快速、灵敏地检测单核细胞增生李斯特菌。
  • DOI:
    10.1111/1574-6968.12610
  • 发表时间:
    2014-12-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Yi Wang;Yan Wang;Aijing Ma;Dongxun Li;C. Ye
  • 通讯作者:
    C. Ye
Combining thermal–alkaline hydrolysis pretreatment with catalytic supercritical water gasification for hydrogen production from sewage sludge
热碱水解预处理与催化超临界水气化相结合用于污水污泥制氢
  • DOI:
    10.1016/j.jwpe.2024.105062
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Yan Wang;Aixin Feng;Chen Li;Qiao Xu;Xue He;Yuying Du;Miao Gong
  • 通讯作者:
    Miao Gong

Yan Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yan Wang', 18)}}的其他基金

Spatial Explanation and Planning for Resilience of Community-Based Small Businesses to Environmental Shocks
基于社区的小型企业对环境冲击的抵御能力的空间解释和规划
  • 批准号:
    2316450
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311597
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Efficient Mobile Edge Oriented Deep Learning Framework
职业:高效的面向移动边缘的深度学习框架
  • 批准号:
    2145389
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cross-plane Heat Conduction in 2D Materials under Large Compressive Strain
合作研究:大压缩应变下二维材料的横向热传导
  • 批准号:
    2211696
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
SCC-PG: SmartCurb: Building Smart Urban Curb Environments
SCC-PG:SmartCurb:构建智能城市路缘环境
  • 批准号:
    2124858
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Fundamental Investigation of the Wave Nature of Lattice Thermal Transport
职业:晶格热传输波性质的基础研究
  • 批准号:
    2047109
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
RII Track-4: Low-temperature Laser Sintering and Melting of Semiconductors Through Selective Excitation of Soft Phonons
RII Track-4:通过软声子的选择性激发实现半导体的低温激光烧结和熔化
  • 批准号:
    2033424
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2120276
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
RAPID: Dynamic Interactions between Human and Information in Complex Online Environments Responding to SARS-COV-2
RAPID:复杂在线环境中人与信息之间的动态交互,应对 SARS-COV-2
  • 批准号:
    2028012
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
  • 批准号:
    2028858
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

一维限制结构增强的单纳米颗粒等离激元探测方法及基因突变检测研究
  • 批准号:
    62005112
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
负载HLA限制性自身抗原多肽的致耐受性纳米疫苗治疗类风湿关节炎的实验研究
  • 批准号:
    82001706
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于纳米多孔GaN和ITO光场限制层的硅基GaN微盘激光器研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
有序钨纳米线自限制性焊接制备透明柔性电极
  • 批准号:
    51905103
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于多重限制效应的金属(Sn,Sb)/多级孔掺氮定向碳纳米管阵列复合结构的构筑及储钠机制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

Tuning the Thermodynamics and Kinetics of H+ and e- Transfer in Nanoconfined Environments
调整纳米环境中 H 和电子转移的热力学和动力学
  • 批准号:
    2204045
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
UNS: Interfacial Properties of Nanoconfined Ionic Liquid
UNS:纳米离子液体的界面性质
  • 批准号:
    2015653
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Influence of Structure, Interionic Interactions, Interfacial slip and Viscous-electric Coupling Phenomena on the Rheology of Nanoconfined Ionic Liquids
结构、离子间相互作用、界面滑移和粘电耦合现象对纳米限域离子液体流变性的影响
  • 批准号:
    1916609
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
UNS: Interfacial Properties of Nanoconfined Ionic Liquid
UNS:纳米离子液体的界面性质
  • 批准号:
    2015653
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: 1D Nanoconfined Helium: A Versatile Platform for Exploring Luttinger Liquid Physics
合作研究:一维纳米限制氦:探索 Luttinger 液体物理的多功能平台
  • 批准号:
    1808440
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了