NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids (NSF-BSF Application)

NSF/DMR-BSF:用于预测固体激发态计算的密度泛函(NSF-BSF 应用)

基本信息

  • 批准号:
    2015991
  • 负责人:
  • 金额:
    $ 33.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical and computational research, and education to advance computational methods for predicting the properties of materials from fundamental scientific principles. The discovery and development of new materials for optoelectronic applications is significantly limited by a detailed understanding of how materials harvest light, transduce energy, and transport charge - all phenomena involving electronic excited states where the configuration of electrons leads to a higher energy than the lowest or ground state energy of the material. Existing computational methods are predictive for such processes, but they come at significant computational cost, and alternative approaches with similar accuracy would enable predictions for increasingly complex materials and for adapting such methods for materials discovery and design. This research project lays important groundwork toward the development of more efficient predictive theoretical frameworks that are complimentary to more computationally costly existing methods for electronic excited states in real materials. Central to this effort is mentoring of next-generation computational materials theorists at all age levels, with focus on active recruitment and promotion of women and other underrepresented-minority undergraduate and graduate students; and outreach through tours of local research facilities for undergraduate, elementary, and middle-school students – as well as educators – in the Bay area and beyond.TECHNICAL SUMMARYThis award supports theoretical and computational research, and education to advance computational methods for predicting the properties of materials. The electronic band structure is a fundamental property of crystalline matter. It serves as the basis for understanding charge transport properties of bulk materials. Moreover, it is a prerequisite for understanding optical properties of materials and for rationalizing the results of spectroscopic measurements. In materials and condensed matter physics, the formalism of choice for quantitative determination of the band structure has long been many-body perturbation theory (MBPT). This formalism has yielded excellent electronic structure predictions for many different classes of metals, semiconductors, and insulators. However, these predictions come at significant computational cost, and the ability to extract band structures from density functional theory (DFT), based on the single-electron energies and orbitals obtained from the solution of the Kohn-Sham equation, could alleviate this cost. This project involves a binational theoretical and computational collaboration to develop a robust framework for the first principles computational prediction of the quasiparticle band gaps, band structures, and optical spectra of complex solid-state materials with greater accuracy and efficiency than existing methodologies, by combining optimally-tuned range separated hybrid (OTRSH) density functionals with many-body perturbation theory. The PIs’ work has shown that OTRSH functionals lead to band structures and optical spectra for a broad class of molecular crystals and a set of group IV and III–V semiconductors and insulators, with the accuracy of leading-edge ab initio GW and GW-BSE approaches. Here, the PIs build on this success by advancing two important fronts simultaneously. First, the PIs will evaluate OTRSH as an effective starting point for GW and GW-BSE calculations for solids. Second, building on prior work, the PIs will explore routes to determine accurate DFT-OTRSH band structure and TDDFT-OTRSH optical properties without GW calculations. Once validated, the PIs will use OTRSH starting points to calculate the quasiparticle gap and band structure, as well as the linear absorption spectra, of an array of complex materials, including halide perovskites, important optoelectronic materials for which standard GW and GW-BSE methods have been demonstrated to be inadequate or inconsistent.The progress made thus far with OTRSH for band structure and optical spectra of solids is encouraging, as it suggests that it is in general possible to fix one parameter to the orientationally-averaged dielectric constant and then tune a single parameter – the range-separation parameter – to yield band structures and optical spectra in agreement with GW-BSE, partially or fully mitigating computational costs associated with MBPT. Given the quality of the OTRSH band structure with a single parameter, could OTRSH be an optimal starting point for GW and GW-BSE calculations of complex structurally and chemically heterogeneous systems? Additionally, it remains to be seen whether one can set this single parameter independent of GW-BSE calculations and experiment. Can it be predicted from materials properties in a computationally tractable manner, for isotropic and anisotropic materials alike? The aim of this project is to address these questions, and ultimately develop efficient approaches for understanding existing and predicting new excited-state phenomena in complex materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一奖项支持理论和计算研究和教育,以促进计算方法,以预测基本科学原理的材料的性质。对于材料如何收获光,转化能量和运输电荷的详细了解,用于光电应用的新材料的发现和开发受到明显的限制 - 所有现象涉及电子激发的状态,在这种情况下,电子设备的配置会导致比材料最低或基态能量更高的能量。现有的计算方法可以预测此类过程,但它们的计算成本很高,具有相似精度的替代方法可以预测日益复杂的材料以及对材料发现和设计的此类方法的调整。该研究项目为开发更有效的预测理论框架提供了重要的基础,这些框架与实际材料中电子激发态的现有方法相称。这项工作的核心是对所有年龄段的下一代计算材料理论家的心理,重点是积极招募和促进妇女以及其他代表性不足的少数学科本科生和研究生;以及通过在湾区及以后的本科,小学和中学生以及教育工作者的当地研究设施参观的宣传。技术摘要奖支持理论和计算研究,以及教育,以推动计算方法来预测材料的性质。电子带结构是晶体物质的基本特性。它是理解大量材料的电荷运输特性的基础。此外,它是理解材料光学特性并合理化光谱测量结果的先决条件。在材料和凝结物理学中,长期以来,多体扰动理论(MBPT)长期以来,定量确定条带结构的选择形式。这种形式为许多不同类别的金属,半导体和绝缘子提供了出色的电子结构预测。但是,这些预测以显着的计算成本,以及从密度功能理论(DFT)中提取带子结构的能力,它基于从Kohn-Sham方程的解决方案获得的单电子能量和轨道,可以减轻这一成本。该项目涉及二进制理论和计算合作,以开发一个可靠的框架,以与相比,与现有方法相比,与现有方法相比,通过与最佳探访范围分离的杂种(OTRSH)与多个型物质的功能相结合,具有更高准确性和效率的复杂固态材料的准确性固态材料的计算预测。 PIS的工作表明,OTRSH功能导致一系列广泛的分子晶体以及一组IV和III – V组半导体和绝缘子的频带结构和光谱,并具有先进的Abribo AbribiO AbribiO GW和GW-BSE方法的准确性。在这里,PI通过简单地推进两个重要方面来建立在这一成功的基础上。首先,PI将评估OTRSH作为固体的GW和GW-BSE计算的有效起点。其次,在先前工作的基础上,PI将探索路线,以确定未经GW计算的准确的DFT-OTRSH频段结构和TDDFT-OTRSH光学性能。一旦得到验证,PI将使用OTRSH起点来计算一系列复杂材料的一系列复杂材料,包括卤化物钙钛矿,重要的光电材料,为这些标准的GW和GW-BSE的结构不足,包括卤化物的光电材料,包括卤化物钙蛋白酶,包括卤化物钙蛋白酶的范围远非如此。令人鼓舞的是,这通常表明,通常可以将一个参数固定到方向平均饮食常数,然后调整单个参数(范围分离参数),以产生带状结构和光谱频谱,与GW-BSE一致,部分或完全低调与MBPT相关的计算成本。考虑到具有单个参数的OTRSH频带结构的质量,OTRSH是否可以成为结构和化学异质系统复杂计算的GW和GW-BSE计算的最佳起点?此外,是否可以将此单参数设置为独立于GW-BSE计算和实验,还有待观察。可以从材料特性中以计算性的方式预测,以及各向同性和各向异性材料?该项目的目的是解决这些问题,并最终开发出有效的方法来理解复杂材料中现有的现有现象并预测新的令人兴奋的国家现象。该奖项反映了NSF的法定任务,并通过评估该基金会的知识分子优点和更广泛的影响来审查标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimally tuned starting point for single-shot GW calculations of solids
  • DOI:
    10.1103/physrevmaterials.6.053802
  • 发表时间:
    2022-05-16
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Gant, Stephen E.;Haber, Jonah B.;Neaton, Jeffrey B.
  • 通讯作者:
    Neaton, Jeffrey B.
Time‐Dependent Density Functional Theory of Narrow Band Gap Semiconductors Using a Screened Range‐Separated Hybrid Functional
使用屏蔽范围的窄带隙半导体的时间相关密度泛函理论 - 分离混合泛函
  • DOI:
    10.1002/adts.202000220
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Wing, Dahvyd;Neaton, Jeffrey B.;Kronik, Leeor
  • 通讯作者:
    Kronik, Leeor
Band gaps of halide perovskites from a Wannier-localized optimally tuned screened range-separated hybrid functional
  • DOI:
    10.1103/physrevmaterials.6.104606
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Guy Ohad;Dahvyd Wing;Stephen E. Gant;A. Cohen;J. Haber;Francisca Sagredo;Marina R. Filip;J. Neaton;L. Kronik
  • 通讯作者:
    Guy Ohad;Dahvyd Wing;Stephen E. Gant;A. Cohen;J. Haber;Francisca Sagredo;Marina R. Filip;J. Neaton;L. Kronik
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Neaton其他文献

Jeffrey Neaton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Neaton', 18)}}的其他基金

NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids
NSF/DMR-BSF:用于固体预测激发态计算的密度泛函
  • 批准号:
    1708892
  • 财政年份:
    2017
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Standard Grant

相似国自然基金

泛素连接酶DDEL1/2/3介导水杨酸羟化酶DMR6降解调控植物免疫的分子机制
  • 批准号:
    32300255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PpbHLH14-DMR6-like响应MeJA诱导增强梨炭疽病抗性的分子机制
  • 批准号:
    32302484
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circRNA-DMR介导m6A去甲基化酶ALKBH5低表达并促进糖尿病视网膜小胶质细胞M1型极化的机制研究
  • 批准号:
    82201200
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
circRNA-DMR介导m6A去甲基化酶ALKBH5低表达并促进糖尿病视网膜小胶质细胞M1型极化的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Dlk1-Dio3印记区域内母本甲基化差异甲基化区Meg8-DMR的功能研究
  • 批准号:
    31771601
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF/DMR-BSF: Artificial Semiconductor Nanocrystal Molecules for Charge Carrier Separation
NSF/DMR-BSF:用于电荷载流子分离的人造半导体纳米晶体分子
  • 批准号:
    2026741
  • 财政年份:
    2021
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Theory of Quantum Materials
NSF/DMR-BSF:量子材料理论
  • 批准号:
    2000987
  • 财政年份:
    2020
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Synergistic biopolymer co-assembly regulating the emergence of translation and replication in synthetic networks
NSF/DMR-BSF:协同生物聚合物共组装调节合成网络中翻译和复制的出现
  • 批准号:
    2004846
  • 财政年份:
    2020
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Continuing Grant
RUI: NSF/DMR-BSF: Nonequilibrium Quantum Matter: Timescales and Self-Averaging
RUI:NSF/DMR-BSF:非平衡量子物质:时间尺度和自平均
  • 批准号:
    1936006
  • 财政年份:
    2020
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Electronic Correlations and Disorder in Berry materials
NSF/DMR-BSF:浆果材料中的电子相关性和无序性
  • 批准号:
    2002795
  • 财政年份:
    2020
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了