Harold Cohen & Leslie Mezei: Pioneering Times of Algorithmic Art.Two Book Projects

哈罗德·科恩

基本信息

项目摘要

The extraordinary work of British artist, Harold Cohen, as far as it is of algorithmic origin, will be registered, critically analyzed and presented from the perspective of visual appearance vs. algorithmic background. Cohen's unique position within the 50 years history of algorithmic art will be characterized.This (perhaps first) systematic investigation of the work of an artist who has almost exclusively worked algorithmically will start a new chapter of art history. We will use the experience gained from here for more and similar investigations (long-term orientation).Additionally, work done in the 1960s by Leslie Mezei in computer science at the University of Toronto will also be studied for a broader context. Thus we open up for the characteristic contradiction of aesthetics and algorithmics.Harold Cohen was an established artist (twice represented at documenta) before he settled in California (around 1970) and started into his second career by only working with computers. Like an erratic rock, his work has since then appeared in the domain of computer art (and art history in general), but also in Artificial Intelligence. We will investigate his work- in its inherent algorithmic as well as aesthetic structures,- in its connection to contemporary non-machinic art,- from the perspective of my theory of the algorithmic image,- and from a semiotic perspective.To this end we do these steps:- register Cohen's algorithmic visual works,- collect his publications,- thoroughly study the publications and selected works of art,- study his software and machines for drawing and painting,- develop a schema of phases of his work, combining algorithmics and aesthetics,- engage in a lasting personal discourse (in particular, two visits to San Diego).The results of this research will be made publicly accessible in the existing compArt database. The main contribution will be a scholarly book.In addition to researching Cohen's work, Leslie Mezei's archive will be analyzed and made available. At a time, when Cohen was still painting traditionally, Mezei discovered the potential of computing in the fine arts. As early as 1964, he began writing about and documenting algorithmic art. He also contributed himself to its development. His archive contains material about early events of the emerging movement, at least from North America. The work will focus on editing and extending an unpublished manuscript of Mezei's.This project provides the foundation for a serious interpretation of algorithmic art in the contexts of art history and art theory. Today, algorithmic (and digital) art is no longer in doubt. However, a thorough analysis is still missing. The project will bridge the gap between algorithmic-constructive and aesthetic-interpretative thinking.
英国艺术家哈罗德·科恩 (Harold Cohen) 的非凡作品,就其算法起源而言,将从视觉外观与算法背景的角度进行记录、批判性分析和呈现。科恩在算法艺术 50 年历史中的独特地位将得到表征。对一位几乎完全通过算法进行创作的艺术家的作品进行的(也许是第一次)系统调查将开启艺术史的新篇章。我们将利用从这里获得的经验进行更多类似的研究(长期定位)。此外,还将在更广泛的背景下研究 Leslie Mezei 在 1960 年代在多伦多大学计算机科学领域所做的工作。因此,我们打开了美学和算法之间的典型矛盾。 哈罗德·科恩 (Harold Cohen) 在定居加利福尼亚州(1970 年左右)之前是一位知名艺术家(两次参加文献展),并开始了他的第二职业生涯,只与计算机打交道。就像一块飘忽不定的岩石一样,他的作品从那时起就出现在计算机艺术(以及一般艺术史)领域,而且也出现在人工智能领域。我们将从我的算法图像理论的角度以及从符号学的角度来研究他的作品 - 在其固有的算法和美学结构中,在其与当代非机械艺术的联系中。执行以下步骤:- 注册科恩的算法视觉作品,- 收集他的出版物,- 彻底研究出版物和选定的艺术作品,- 研究他的绘图和绘画软件和机器,- 结合算法制定他的工作阶段图式和美学,-进行持久的个人讨论(特别是两次访问圣地亚哥)。这项研究的结果将在现有的 compArt 数据库中公开获取。主要贡献将是一本学术著作。除了研究科恩的作品外,莱斯利·梅泽的档案也将被分析并提供。当科恩仍在传统绘画时,梅泽伊发现了计算在美术领域的潜力。早在 1964 年,他就开始撰写和记录算法艺术。他也为它的发展做出了自己的贡献。他的档案包含有关新兴运动早期事件的材料,至少来自北美。这项工作将侧重于编辑和扩展 Mezei 未发表的手稿。该项目为在艺术史和艺术理论的背景下认真解释算法艺术提供了基础。如今,算法(和数字)艺术已不再受到质疑。然而,仍然缺乏全面的分析。该项目将弥合算法构建思维和美学解释思维之间的差距。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Think the Image, Don't Make It! On Algorithmic Thinking, Art Education, and Re-Coding
思考图像,不要实现它!
We Find the Aesthetics in Between – A Remark on Algoritmic Art
我们在两者之间找到美学——关于算法艺术的评论
  • DOI:
    10.28937/1000106249
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Frieder Nake
  • 通讯作者:
    Frieder Nake
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Frieder Nake其他文献

Professor Dr. Frieder Nake的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

CSB调控NDN表达在科凯恩氏综合症发病机制中的作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
模情形下有限群的不变式环的Cohen-Macaulay性质、余不变式环及Noether数的研究
  • 批准号:
    12101375
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
图边理想的Cohen-Macaulay性质及代数不变量
  • 批准号:
    12101165
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在若干代数图类上与Cohen-Macaulay相关的组合代数性质研究
  • 批准号:
    11961017
  • 批准年份:
    2019
  • 资助金额:
    40 万元
  • 项目类别:
    地区科学基金项目
线性正则域Cohen类时频分布理论及其在信号分离和检测中的应用
  • 批准号:
    61901223
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

微分次数付き圏のカラビ・ヤウ構造と多元環の表現論
微分阶范畴的Calabi-Yau结构与代数表示论
  • 批准号:
    22KJ0737
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Cohen-Macaulay環の諸階層の研究
科恩-麦考利环的层次结构研究
  • 批准号:
    22KJ2843
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Chiral de Rham complex and automorphic forms
手性德拉姆复合体和自守形式
  • 批准号:
    23K19008
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Towards the theory of Arf rings of higher dimension
迈向高维Arf环理论
  • 批准号:
    23K03058
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on generic Cohen-Macaulay modules and their applications
通用Cohen-Macaulay模及其应用研究
  • 批准号:
    23K12954
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了