Optimization Problems with Quasi-Equilibrium Constraints: Control, Identification, and Design
具有准平衡约束的优化问题:控制、辨识和设计
基本信息
- 批准号:2012391
- 负责人:
- 金额:$ 19.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A wide range of problems in applied sciences involve constraints on variables of interest. These naturally arise in modeling of complex physical phenomena but also appear as a result of hierarchy or competition. Two different classes of these constraints can be described: explicit, where the bounds are known in advance, and implicit, where the bounds depend on the solution of the problem itself. One simple example of an implicitly constrained problem is that of finding the position of an elastic membrane with an obstacle that deforms upon the action of the membrane. In this example, the membrane position is the variable of interest, and the position of the obstacle is the implicit bound or constraint. The control and parameter identification for this class of implicitly constrained problems represent a significant challenge for a large variety of problems. Some possible applications include the design of composite materials that sustain large forces without plastic deformation, the manufacture of multilayer organic light emitting diodes (OLEDs), and the detection of subsurface cracks in buildings that may compromise structural integrity and lead to catastrophic failure.An increasing number of challenging problems in applied sciences involve non-differentiable structures as well as partial differential operators, thus leading to nonsmooth distributed parameter systems. Many of these problems have, directly in the problem formulation, an additional form of implicit constraint resulting in a quasi-variational inequality (QVI). This is commonly found in elastoplasticity, friction mechanics, superconductivity, and also arises as the result of competition of a finite resource in generalized Nash games. Structurally speaking, QVIs are nonconvex and nonsmooth problems that possess a variational formulation with a constraint not known a priori and depending on the state itself. Many design, control or identification problems involve QVIs. In particular, these are formulated as an optimization problem with the QVI as constraint, and where the design variable or the unknown parameter is of piecewise constant nature. This significantly increases the difficulty of the overall problem but it links it directly to real life applications. This proposal focuses on a class of optimization problems with quasi-variational constraints. The formulation is wide enough to include problems associated to water accumulation in real topographical data, non-isothermal elastoplasticity, and current flow on organic multilayer structures (LEDs). We aim at the development of solution algorithms of QVIs, and optimization thereof. The approaches will include an appropriate form of Moreau-Yosida regularization of the implicit constraint, and novel forms of regularization to guarantee a piecewise constant nature of solution parameters. The new methods developed here will enable the solution of problems that are currently intractable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
应用科学中的各种问题涉及对感兴趣的变量的限制。这些自然出现在建模复杂的物理现象时,但由于层次结构或竞争而出现。可以描述这些约束的两个不同类别的类别:显式,即预先知道界限的情况,而界限则取决于问题本身的解决方案。隐式约束问题的一个简单示例是找到弹性膜的位置,其障碍物在膜的作用上变形。在此示例中,膜位置是感兴趣的变量,障碍物的位置是隐式约束或约束。该类别的隐式约束问题的控制和参数识别代表了各种问题的重大挑战。 一些可能的应用包括设计的复合材料,这些复合材料在没有塑性变形的情况下维持大力,多层有机光发射二极管(OLEDS)(OLEDS)的制造以及建筑物中的地下裂纹的检测可能会损害结构完整性,并损害灾难性失败,从而导致灾难性的越来越多的疾病,从而导致了不可或缺的疾病,因此具有较大的成分,并构成了良好的疾病,又构成了良好的疾病,并构成了良好的疾病,并分别构成了良好的疾病。分布式参数系统。这些问题中有许多直接在问题制定中,是隐性约束的另一种形式,导致了准差异不平等(QVI)。这通常是在弹性性,摩擦力学,超导性中发现的,并且由于广义纳什游戏的有限资源的竞争而产生。从结构上讲,QVI是非概念和非平滑问题,具有差异表述,并取决于状态本身,并取决于状态本身。 许多设计,控制或识别问题涉及QVI。特别是,这些被称为QVI作为约束的优化问题,以及在何处设计变量或未知参数具有分段恒定性质。这大大增加了整体问题的难度,但它将其直接与现实生活应用联系起来。该提案重点介绍了一系列具有准差异约束的优化问题。该公式足够宽,包括在实际地形数据,非等温弹性性和有机多层结构(LED)上流动的流动中与水积累相关的问题。我们旨在开发QVI的解决方案算法及其优化。这些方法将包括对隐式约束的适当形式的莫罗 - yosida正则化,以及新型的正则化形式,以保证解决方案参数的分段恒定性质。此处开发的新方法将使目前棘手的问题解决方案。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nondiffusive variational problems with distributional and weak gradient constraints
具有分布和弱梯度约束的非扩散变分问题
- DOI:10.1515/anona-2022-0227
- 发表时间:2022
- 期刊:
- 影响因子:4.2
- 作者:Antil, Harbir;Arndt, Rafael;Rautenberg, Carlos N.;Verma, Deepanshu
- 通讯作者:Verma, Deepanshu
Stability of the Solution Set of Quasi-variational Inequalities and Optimal Control
- DOI:10.1137/19m1250327
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:A. Alphonse;M. Hintermüller;C. N. Rautenberg
- 通讯作者:A. Alphonse;M. Hintermüller;C. N. Rautenberg
On a Fractional Version of a Murat Compactness Result and Applications
关于 Murat 紧致性结果的分数版本及其应用
- DOI:10.1137/20m1379873
- 发表时间:2021
- 期刊:
- 影响因子:2
- 作者:Antil, Harbir;Rautenberg, Carlos N.;Schikorra, Armin
- 通讯作者:Schikorra, Armin
Optimal conduit shape for Stokes flow
斯托克斯流的最佳导管形状
- DOI:10.1016/j.sysconle.2023.105461
- 发表时间:2023
- 期刊:
- 影响因子:2.6
- 作者:Ceretani, Andrea N.;Hu, Weiwei;Rautenberg, Carlos N.
- 通讯作者:Rautenberg, Carlos N.
Existence, uniqueness, and stabilization results for parabolic variational inequalities
- DOI:10.1051/cocv/2023017
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Axel Kroner;C. N. Rautenberg;S. Rodrigues
- 通讯作者:Axel Kroner;C. N. Rautenberg;S. Rodrigues
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Rautenberg其他文献
Carlos Rautenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
太赫兹高功率回旋管准光输出相位校正问题研究
- 批准号:62301354
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
中子星X射线双星中两种重要准周期振荡现象及有关天体物理问题
- 批准号:12373050
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
高维最优输运问题的深度学习求解方法研究及其在图像配准中的应用
- 批准号:12301538
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
热电弹多场耦合准晶复合材料/结构的缺陷问题研究
- 批准号:12272402
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
热电弹多场耦合准晶复合材料/结构的缺陷问题研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
LEAPS-MPS: Deep Quasi-Reversibility Inversion for Source Localization Oncological Problems
LEAPS-MPS:源定位肿瘤问题的深度准可逆反演
- 批准号:
2316603 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Targeting Health Disparities through Housing Redevelopment: A Natural Experiment of Housing Quality, Stability, and Economic Integration
通过住房重建消除健康差距:住房质量、稳定性和经济一体化的自然实验
- 批准号:
10624840 - 财政年份:2021
- 资助金额:
$ 19.99万 - 项目类别:
Targeting Health Disparities through Housing Redevelopment: A Natural Experiment of Housing Quality, Stability, and Economic Integration
通过住房重建消除健康差距:住房质量、稳定性和经济一体化的自然实验
- 批准号:
10770875 - 财政年份:2021
- 资助金额:
$ 19.99万 - 项目类别:
Promoting effective coping by children exposed to post-divorce interparental conflict to reduce risk for mental health problems
促进遭受离婚后父母冲突的儿童有效应对,以降低心理健康问题的风险
- 批准号:
10609401 - 财政年份:2020
- 资助金额:
$ 19.99万 - 项目类别:
Promoting effective coping by children exposed to post-divorce interparental conflict to reduce risk for mental health problems
促进遭受离婚后父母冲突的儿童有效应对,以降低心理健康问题的风险
- 批准号:
10370403 - 财政年份:2020
- 资助金额:
$ 19.99万 - 项目类别: