LEAPS-MPS: Deep Quasi-Reversibility Inversion for Source Localization Oncological Problems

LEAPS-MPS:源定位肿瘤问题的深度准可逆反演

基本信息

项目摘要

Brain tumors are among the most fatal cancers, affecting millions of individuals worldwide. In the United States alone, each year thousands of adults and children receive a primary brain tumor diagnosis. A key focus for oncologists, neurologists, and other scientists involved in the field is in determining the specific anatomical origin site of the tumor. Knowing this site might help in gaining insights in how the tumor behaves, in predicting the symptoms it is likely to cause, and in identifying genetic syndromes that have a high association with brain tumors. Therefore, this source information can be an important aid in the early detection of brain cancer. This project studies a reliable and efficient inversion algorithm called Deep Quasi-Reversibility Method (DQRM) that can quickly reconstruct the primary tumor’s location. By actively involving undergraduate students in research activities and fostering collaborations between institutions, the project will contribute to the well-being of individuals affected by brain tumors as well as help to cultivate a skilled STEM workforce. The project is based at a long-established HBCU, thus providing an opportunity to broadening research participating in STEM.The project involves numerical and theoretical studies of the proposed DQRM for solving the source localization oncological question with different levels of complexity. The DQRM is a combination of a variational quasi-reversibility (QR) method and a deep learning mesh-free-based algorithm. The design brings together techniques of computational mathematics, partial differential equations, and machine learning to fast deliver a reliable and accurate quasi-solution. On one hand, the variational QR approach can overcome localized features, highly dynamic nonlinearities, and the inherent exponential instability of the reconstruction process. On the other, the deep learning approach handles the curse of dimensionality and the costs associated with data measurement. The first objective of the project is to study the effectiveness of the inverse solver in tackling the quasi-linear parabolic models associated with the evolutionary dynamics of tumor cells. The second is to investigate the applicability of the algorithm by incorporating an advanced tumor growth model that considers factors such as age, size, and spatial structure. The theoretical theme is centered around the convergence of a neural network approximator towards the quasi-solution.This project is funded in part by the Historically Black Colleges and Universities - Excellence in Research (HBCU-EiR) program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
脑肿瘤是最致命的癌症之一,影响了全球数百万个人。仅在美国,每年,成千上万的成年人和儿童都会接受原发性脑肿瘤诊断。肿瘤学家,神经科医生和其他参与该领域的科学家的重点是确定肿瘤的特定解剖学位点。了解该部位可能有助于获得有关肿瘤行为,预测可能引起的症状以及鉴定与脑肿瘤较高相关的遗传综合征的见解。因此,此源信息可能是早期发现脑癌的重要帮助。该项目研究了一种可靠,有效的反转算法,称为深质可逆方法(DQRM),可以快速重建原发性肿瘤的位置。通过积极参与研究活动并促进机构之间的合作,该项目将有助于受脑肿瘤影响的个人的福祉,并有助于培养熟练的STEM劳动力。该项目基于长期建立的HBCU,因此为扩大参与STEM的研究提供了机会。该项目涉及所提出的DQRM的数值和理论研究,用于解决源本地化肿瘤学问题,其复杂性不同。 DQRM是多样性准可逆性(QR)方法和基于深度学习网格的算法的组合。该设计将计算数学,部分微分方程和机器学习的技术汇集在一起​​,以快速提供可靠,准确的准溶液。一方面,变异QR方法可以克服局部特征,高度动态的非线性以及重建过程的指数不稳定性。另一方面,深度学习方法处理维度曲线以及与数据测量相关的成本。该项目的第一个目的是研究反求解器在应对与肿瘤细胞进化动力学相关的准线性抛物线模型方面的有效性。第二个是通过编码考虑年龄,大小和空间结构等因素的晚期肿瘤生长模型来研究算法的适用性。 The theoretical theme is centered around the convergence of a neural network Approximately towards the quasi-solution.This project is funded in part by the Historically Black Colleges and Universities - Excellence in Research (HBCU-EiR) program.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anh Khoa Vo其他文献

Path Planning for Automatic Berthing Using Ship-Maneuvering Simulation-Based Deep Reinforcement Learning
使用基于船舶操纵仿真的深度强化学习进行自动靠泊路径规划
  • DOI:
    10.3390/app132312731
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anh Khoa Vo;Thi Loan Mai;Hyeong
  • 通讯作者:
    Hyeong

Anh Khoa Vo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anh Khoa Vo', 18)}}的其他基金

Conference: The 41st Southeastern-Atlantic Regional Conference on Differential Equations
会议:第 41 届东南大西洋地区微分方程会议
  • 批准号:
    2324359
  • 财政年份:
    2023
  • 资助金额:
    $ 7.83万
  • 项目类别:
    Standard Grant

相似国自然基金

Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
  • 批准号:
    82303896
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合MPS与GAN的复杂地质结构三维重建方法研究
  • 批准号:
    42372341
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
PS-MPs环境暴露干扰甲状腺—棕色脂肪对话引发糖脂代谢紊乱的作用及机制研究
  • 批准号:
    82370847
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高效求解破损船舶运动问题的势流-MPS耦合数值方法研究
  • 批准号:
    52101371
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
HIF-1α介导SOX17抑制纺锤体装配检查点相关基因Mps1调控滋养细胞功能的机制研究
  • 批准号:
    82101760
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 7.83万
  • 项目类别:
    Fellowship Award
生理機能を再現するオルガノイド融合型MPSデバイスの開発
开发再现生理功能的类器官融合 MPS 装置
  • 批准号:
    23K26472
  • 财政年份:
    2024
  • 资助金额:
    $ 7.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ヒト脳関門の統合評価システムBrain-MPSの構築
人脑屏障综合评价系统Brain-MPS的构建
  • 批准号:
    24K18340
  • 财政年份:
    2024
  • 资助金额:
    $ 7.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
  • 批准号:
    2425308
  • 财政年份:
    2024
  • 资助金额:
    $ 7.83万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Network Statistics of Rupturing Foams
LEAPS-MPS:破裂泡沫的网络统计
  • 批准号:
    2316289
  • 财政年份:
    2024
  • 资助金额:
    $ 7.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了