RUI: Expanding our View of the Gravitational-Wave Sky with Machine Learning and Numerical Relativity

RUI:通过机器学习和数值相对论扩展我们对引力波天空的看法

基本信息

  • 批准号:
    2011975
  • 负责人:
  • 金额:
    $ 14.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

This award supports research in relativity and relativistic astrophysics and it addresses the priority areas of NSF's "Windows on the Universe" Big Idea. A century after Einstein predicted the existence of gravitational waves, the two Laser Interferometer Gravitational-wave Observatory (LIGO) detectors opened a new window on the universe by discovering gravitational waves passing through Earth, emanating from cataclysmic, distant events: colliding black holes and neutron stars. The phenomenal precision that LIGO needs to clearly observe these faint waves requires exquisitely isolated detectors. Capturing the physics of colliding black holes and neutron stars requires accurate waveform models. This award will establish a new research group at Christopher Newport University (CNU) to address both of these challenges, through characterizing LIGO detectors to better understand the origins of problematic noise in the detectors, and by improving the waveform models used to interpret the astrophysics of observed signals. Through these projects, the CNU group will play a crucial role in improving the quality of the LIGO detector data and the accuracy of the parameter estimation information that is shared with the astronomical community and the public. The students supported by this award will be trained in computer programming, data analysis, and machine learning. These important transferable skills will prepare the students for a wide range of successful and meaningful STEM careers in academia and industry. LIGO’s sensitivity to gravitational waves is limited by non-stationary noise, which fluctuates over time depending on various environmental influences. This work will extend a method developed by the PI with collaborators to correlate these variations in sensitivity with auxiliary instrumental sensors to determine the most possible causes, using lasso linear regression. This method has already been useful for identifying noise sources that change over the course of hours, but this work will target problematic persistent noise transients, which impede gravitational wave searches and have rates varying over the course of days and weeks. The PI and students will also contribute to data quality validation of gravitational wave candidate events, to ensure that the broader astronomical community has access to necessary data quality information. The expected improvements to LIGO in the coming years will enable the observation of many more black holes, doubtless some with interestingly different properties and some potentially having much higher signal-to-noise ratios. Accurately extracting the astrophysical parameters of these signals requires comparing to template waveforms that span the potential discovery space. The PI and her students will work on surrogate modeling (a way to efficiently interpolate between expensive but accurate numerical relativity waveforms), working with members of the Simulating eXtreme Spacetimes collaboration. This work will enhance our ability to interpret black hole observations, especially those with large spins.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持相对论和相对论天体物理学的研究,并解决了美国国家科学基金会“宇宙之窗”大构想的优先领域。在爱因斯坦预言引力波存在一个世纪后,两个激光干涉仪引力波天文台(LIGO)探测器投入使用。通过发现穿过地球的引力波,从灾难性的遥远事件中发出的宇宙新窗口:黑洞和中子的碰撞LIGO 需要极其精确地观测这些微弱的波,捕捉碰撞黑洞和中子星的物理现象需要精确的波形模型。通过表征 LIGO 探测器以更好地了解探测器中存在问题的噪声的根源,并改进用于解释观测信号的天体物理学的波形模型,CNU 小组将解决这两个挑战。在提高 LIGO 探测器数据的质量以及与天文学界和公众共享的参数估计信息的准确性方面发挥着至关重要的作用,该奖项支持的学生将接受计算机编程、数据分析和机器学习方面的培训。这些重要的可转移性将为学生在学术界和工业界的广泛成功和有意义的 STEM 职业做好准备。LIGO 对引力波的敏感性受到非平稳噪声的限制,这种噪声会随着时间的推移而波动,具体取决于各种环境影响。使用套索线性回归扩展 PI 与合作者开发的方法,将这些灵敏度变化与辅助仪器传感器相关联,以确定最可能的原因。该方法已可用于识别随时间变化的噪声源,但是。这项工作将针对有问题的持续噪声瞬变,这些噪声瞬变阻碍了引力波搜索,并且其速率在数天和数周内变化。PI 和学生还将为引力波候选事件的数据质量验证做出贡献,以确保更广泛的影响。天文学界可以获得必要的数据质量信息,LIGO 在未来几年的预期改进将能够观测到更多的黑洞,毫无疑问,其中一些具有有趣的不同特性,而另一些则可能具有更高的信噪比。这些信号的天体物理参数需要与跨越潜在发现空间的模板波形进行比较。 PI 和她的学生将致力于替代建模(一种在昂贵但准确的数值相对论之间进行有效插值的方法)。波形),与模拟极限时空合作的成员合作,这项工作将增强我们解释黑洞观测的能力,特别是那些具有大自旋的黑洞。这项奖励法定任务,并通过使用基金会的智力价值和评估进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LIGO detector characterization in the second and third observing runs
  • DOI:
    10.1088/1361-6382/abfd85
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    D. Davis;J. Areeda;B. Berger;R. Bruntz;A. Effler;R. Essick;R. Fisher;P. Godwin;E. Goetz;A. Helmling-Cornell;B. Hughey;E. Katsavounidis;A. Lundgren;D. Macleod;Z. Márka;T. Massinger;A. Matas;J. McIver;G. Mo;K. Mogushi;P. Nguyen;L. Nuttall;R. Schofield;D. Shoemaker;S. Soni;A. Stuver;A. Urban;G. Valdes;M. Walker;R. Abbott;C. Adams;R. Adhikari;A. Ananyeva;S. Appert;K. Arai;Y. Asali;S. Aston;C. Austin;A. Baer;M. Ball;S. Ballmer;S. Banagiri;D. Barker;C. Barschaw;L. Barsotti;J. Bartlett;J. Betzwieser;R. Beda;D. Bhattacharjee;J. Bidler;G. Billingsley;S. Biscans;C. Blair;R. Blair;N. Bode;P. Booker;R. Bork;A. Bramley;A. Brooks;D. Brown;A. Buikema;C. Cahillane;T. Callister;G. Caneva Santoro;K. Cannon;J. Carlin;K. Chandra;X. Chen;N. Christensen;A. Ciobanu;F. Clara;C. Compton;S. Cooper;K. Corley;M. Coughlin;S. Countryman;P. Covas;D. Coyne;S. Crowder;T. Dal Canton;B. Danila;L. Datrier;G. Davies;T. Dent;N. Didio;C. Di Fronzo;K. Dooley;J. Driggers;P. Dupej;S. Dwyer;T. Etzel;M. Evans;T. Evans;S. Fairhurst;J. Feicht;Á. Fernández-Galiana;R. Frey;P. Fritschel;V. Frolov;P. Fulda;M. Fyffe;B. Gadre;J. Giaime;K. Giardina;G. González;S. Gras;C. Gray;R. Gray;A. Green;A. Gupta;E. Gustafson;R. Gustafson;J. Hanks;J. Hanson;T. Hardwick;I. Harry;R. Hasskew;M. Heintze;J. Heinzel;N. Holland;I. J. Hollows;C. Hoy;S. Hughey;S. Jadhav;K. Janssens;G. Johns;J. Jones;S. Kandhasamy;S. Karki;M. Kasprzack;K. Kawabe;D. Keitel;N. Kijbunchoo;Y. M. Kim;P. King;J. Kissel;S. Kulkarni;Rahul Kumar;M. Landry;B. Lane;B. Lantz;M. Laxen;Y. Lecoeuche;J. Leviton;J. Liu;M. Lormand;R. Macas;A. Macedo;M. Macinnis;V. Mandic;G. Mansell;S. Márka;B. Martinez;K. Martinovic;D. Martynov;K. Mason;F. Matichard;N. Mavalvala;R McCarthy-;D. McClelland;S. Mccormick;L. McCuller;C. McIsaac;T. McRae;G. Mendell;K. Merfeld;E. Merilh;P. Meyers;F. Meylahn;I. Michaloliakos;H. Middleton;J. Mills;T. Mistry;R. Mittleman;G. Moreno;C. Mow-Lowry;S. Mozzon;L. Mueller;N. Mukund;A. Mullavey;J. Muth;T. Nelson;A. Neunzert;S. Nichols;E. Nitoglia;J. Oberling;J. Oh;S. Oh;R. Oram;R. Ormiston;N. Ormsby;C. Osthelder;D. Ottaway;H. Overmier;A. Pai;J. R. Palamos;F. Pannarale;W. Parker;O. Patane;M. Patel;E. Payne;A. Pele;R. Penhorwood;C. Perez;K. S. Phukon;M. Pillas;M. Pirello;H. Radkins;K. Ramirez;J. Richardson;K. Riles;K. Rink;N. Robertson;J. Rollins;C. Romel;J. Romie;M. Ross;K. Ryan;T. Sadecki;M. Sakellariadou;E. Sanchez;L. Sanchez;L. Sandles;T. R. Saravanan;R. Savage;D. Schaetzl;R. Schnabel;E. Schwartz;D. Sellers;T. Shaffer;D. Sigg;A. Sintes;B. Slagmolen;J. R. Smith;K. Soni;B. Sorazu;A. Spencer;K. Strain;D. Strom;L. Sun;M. Szczepańczyk;J. Tasson;R. Tenorio;M. Thomas;P. Thomas;K. Thorne;K. Toland;C. Torrie;A. Tran;G. Traylor;M. Trevor;M. Tse;G. Vajente;N. van Remortel;D. Vander-Hyde;A. Vargas;J. Veitch;P. Veitch;K. Venkateswara;Gautam Venugopalan;A. Viets;V. Villa-Ortega;T. Vo;C. Vorvick;M. Wade;G. Wallace;R. Ward;J. Warner;B. Weaver;A. Weinstein;R. Weiss;K. Wette;D. White;L. White;C. Whittle;A. Williamson;B. Willke;C. Wipf;L. Xiao;R. Xu;H. Yamamoto;Hang Yu;Haocun Yu;L. Zhang;Y. Zheng;M. Zucker;J. Zweizig
  • 通讯作者:
    D. Davis;J. Areeda;B. Berger;R. Bruntz;A. Effler;R. Essick;R. Fisher;P. Godwin;E. Goetz;A. Helmling-Cornell;B. Hughey;E. Katsavounidis;A. Lundgren;D. Macleod;Z. Márka;T. Massinger;A. Matas;J. McIver;G. Mo;K. Mogushi;P. Nguyen;L. Nuttall;R. Schofield;D. Shoemaker;S. Soni;A. Stuver;A. Urban;G. Valdes;M. Walker;R. Abbott;C. Adams;R. Adhikari;A. Ananyeva;S. Appert;K. Arai;Y. Asali;S. Aston;C. Austin;A. Baer;M. Ball;S. Ballmer;S. Banagiri;D. Barker;C. Barschaw;L. Barsotti;J. Bartlett;J. Betzwieser;R. Beda;D. Bhattacharjee;J. Bidler;G. Billingsley;S. Biscans;C. Blair;R. Blair;N. Bode;P. Booker;R. Bork;A. Bramley;A. Brooks;D. Brown;A. Buikema;C. Cahillane;T. Callister;G. Caneva Santoro;K. Cannon;J. Carlin;K. Chandra;X. Chen;N. Christensen;A. Ciobanu;F. Clara;C. Compton;S. Cooper;K. Corley;M. Coughlin;S. Countryman;P. Covas;D. Coyne;S. Crowder;T. Dal Canton;B. Danila;L. Datrier;G. Davies;T. Dent;N. Didio;C. Di Fronzo;K. Dooley;J. Driggers;P. Dupej;S. Dwyer;T. Etzel;M. Evans;T. Evans;S. Fairhurst;J. Feicht;Á. Fernández-Galiana;R. Frey;P. Fritschel;V. Frolov;P. Fulda;M. Fyffe;B. Gadre;J. Giaime;K. Giardina;G. González;S. Gras;C. Gray;R. Gray;A. Green;A. Gupta;E. Gustafson;R. Gustafson;J. Hanks;J. Hanson;T. Hardwick;I. Harry;R. Hasskew;M. Heintze;J. Heinzel;N. Holland;I. J. Hollows;C. Hoy;S. Hughey;S. Jadhav;K. Janssens;G. Johns;J. Jones;S. Kandhasamy;S. Karki;M. Kasprzack;K. Kawabe;D. Keitel;N. Kijbunchoo;Y. M. Kim;P. King;J. Kissel;S. Kulkarni;Rahul Kumar;M. Landry;B. Lane;B. Lantz;M. Laxen;Y. Lecoeuche;J. Leviton;J. Liu;M. Lormand;R. Macas;A. Macedo;M. Macinnis;V. Mandic;G. Mansell;S. Márka;B. Martinez;K. Martinovic;D. Martynov;K. Mason;F. Matichard;N. Mavalvala;R McCarthy-;D. McClelland;S. Mccormick;L. McCuller;C. McIsaac;T. McRae;G. Mendell;K. Merfeld;E. Merilh;P. Meyers;F. Meylahn;I. Michaloliakos;H. Middleton;J. Mills;T. Mistry;R. Mittleman;G. Moreno;C. Mow-Lowry;S. Mozzon;L. Mueller;N. Mukund;A. Mullavey;J. Muth;T. Nelson;A. Neunzert;S. Nichols;E. Nitoglia;J. Oberling;J. Oh;S. Oh;R. Oram;R. Ormiston;N. Ormsby;C. Osthelder;D. Ottaway;H. Overmier;A. Pai;J. R. Palamos;F. Pannarale;W. Parker;O. Patane;M. Patel;E. Payne;A. Pele;R. Penhorwood;C. Perez;K. S. Phukon;M. Pillas;M. Pirello;H. Radkins;K. Ramirez;J. Richardson;K. Riles;K. Rink;N. Robertson;J. Rollins;C. Romel;J. Romie;M. Ross;K. Ryan;T. Sadecki;M. Sakellariadou;E. Sanchez;L. Sanchez;L. Sandles;T. R. Saravanan;R. Savage;D. Schaetzl;R. Schnabel;E. Schwartz;D. Sellers;T. Shaffer;D. Sigg;A. Sintes;B. Slagmolen;J. R. Smith;K. Soni;B. Sorazu;A. Spencer;K. Strain;D. Strom;L. Sun;M. Szczepańczyk;J. Tasson;R. Tenorio;M. Thomas;P. Thomas;K. Thorne;K. Toland;C. Torrie;A. Tran;G. Traylor;M. Trevor;M. Tse;G. Vajente;N. van Remortel;D. Vander-Hyde;A. Vargas;J. Veitch;P. Veitch;K. Venkateswara;Gautam Venugopalan;A. Viets;V. Villa-Ortega;T. Vo;C. Vorvick;M. Wade;G. Wallace;R. Ward;J. Warner;B. Weaver;A. Weinstein;R. Weiss;K. Wette;D. White;L. White;C. Whittle;A. Williamson;B. Willke;C. Wipf;L. Xiao;R. Xu;H. Yamamoto;Hang Yu;Haocun Yu;L. Zhang;Y. Zheng;M. Zucker;J. Zweizig
GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run
  • DOI:
    10.1103/physrevx.11.021053
  • 发表时间:
    2021-06-09
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Abbott, R.;Abbott, T. D.;Zweizig, J.
  • 通讯作者:
    Zweizig, J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marissa Walker其他文献

Marissa Walker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于单侧J-积分的FRP-混凝土界面疲劳裂纹扩展行为表征
  • 批准号:
    12302240
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Rho GTPases家族成员Rho1、RacA和Cdc42通过调控活性氧代谢参与了扩展青霉的生长发育及致病过程
  • 批准号:
    32360783
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
轨道车辆典型焊接结构复合型裂纹扩展机理及统一描述方法研究
  • 批准号:
    52375159
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
区块链系统中面向业务优化的混合状态验证机制的可扩展性研究
  • 批准号:
    62302202
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Expanding Our Understanding of Freshwater Salinization Through Data-Driven Limnology
职业:通过数据驱动的湖沼学扩大我们对淡水盐碱化的理解
  • 批准号:
    2144750
  • 财政年份:
    2022
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Continuing Grant
Expanding our ability to assess and modify movement in real-world settings
扩展我们在现实环境中评估和修改运动的能力
  • 批准号:
    RGPIN-2021-02484
  • 财政年份:
    2022
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Discovery Grants Program - Individual
Expanding our horizons in understanding brain and dietary evolution in Primates and their kin
拓展我们的视野,了解灵长类动物及其亲属的大脑和饮食进化
  • 批准号:
    RGPIN-2022-03073
  • 财政年份:
    2022
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Discovery Grants Program - Individual
Expanding our ability to assess and modify movement in real-world settings
扩展我们在现实环境中评估和修改运动的能力
  • 批准号:
    RGPIN-2021-02484
  • 财政年份:
    2021
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Discovery Grants Program - Individual
Expanding our Reach: Providing STEM Outreach to our Northern Youth and Teachers in Remote Communities of the NWT
扩大我们的影响范围:为西北地区偏远社区的北方青年和教师提供 STEM 推广
  • 批准号:
    531742-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 14.99万
  • 项目类别:
    PromoScience
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了