Collaborative Research: CIF: Small: Deep Sparse Models: Analysis and Algorithms
合作研究:CIF:小型:深度稀疏模型:分析和算法
基本信息
- 批准号:2008460
- 负责人:
- 金额:$ 20.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep convolutional neural networks are a class of mathematical models that provide a variety of machine learning tools with impressive success, often obtaining state-of-the-art results across different fields. Yet, their theoretical understanding and the fundamental ideas behind these algorithms have remained elusive. These questions are essential to recognize and characterize their limitations, to provide guarantees for their performance, and even to develop and engineer improved practical models. A promising approach to obtain this understanding is to make assumptions about the class of samples on which these models are deployed (e.g., so that these are "simple enough") with the intention of providing theoretical insights about them. Further understanding of this 'multi-layered convolutional sparse model' is what this project seeks accomplish, broadening the understanding of its related optimization and learning problems, and shedding light on deep learning methodologies.This project proposes to advance the state of the art in generalized sparse models of different numbers of layers, focusing on both inference and learning problems. Provable and efficient optimization methods will be derived for the inverse problems associated with multilayer sparse models by relying on new results in proximal gradient and subgradient descent methods. This proposal will further extend the formulation of the pursuit to other settings, increasing stability and robustness to the choice of parameters and to outliers. Furthermore, efficient algorithms for the corresponding unsupervised learning problem will be proposed and analyzed. Questions of sample complexity and generalization bounds will in turn be studied in supervised learning settings. Throughout this project, the resulting algorithms will be studied in terms of their relation to specific convolutional network architectures. The project brings together combined expertise in signal processing, dictionary learning, machine learning, and the design, analysis and implementation of optimization methods for large-scale problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度卷积神经网络是一类数学模型,它提供了各种机器学习工具,取得了令人印象深刻的成功,通常在不同领域获得最先进的结果。然而,他们对这些算法背后的理论理解和基本思想仍然难以捉摸。这些问题对于认识和描述其局限性、为其性能提供保证、甚至开发和设计改进的实用模型至关重要。获得这种理解的一个有前途的方法是对部署这些模型的样本类别做出假设(例如,以便这些模型“足够简单”),旨在提供有关它们的理论见解。该项目寻求实现的目标是进一步理解这种“多层卷积稀疏模型”,拓宽对其相关优化和学习问题的理解,并阐明深度学习方法。该项目旨在推进广义领域的最新技术不同层数的稀疏模型,重点关注推理和学习问题。依靠近端梯度和次梯度下降方法的新结果,将针对与多层稀疏模型相关的反问题导出可证明且有效的优化方法。该提案将进一步将追求的制定扩展到其他设置,提高参数选择和异常值的稳定性和鲁棒性。此外,还将提出并分析相应的无监督学习问题的有效算法。样本复杂性和泛化界限的问题将在监督学习环境中依次进行研究。在整个项目中,将根据生成的算法与特定卷积网络架构的关系来研究它们。该项目汇集了信号处理、字典学习、机器学习以及大规模问题优化方法的设计、分析和实施方面的综合专业知识。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Approach For Fast Approximate Matrix Factorizations
- DOI:10.1109/icassp43922.2022.9747165
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Haiyan Yu;Zhen Qin;Zhihui Zhu
- 通讯作者:Haiyan Yu;Zhen Qin;Zhihui Zhu
Recovery and Generalization in Over-Realized Dictionary Learning
- DOI:
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Jeremias Sulam;Chong You;Zhihui Zhu
- 通讯作者:Jeremias Sulam;Chong You;Zhihui Zhu
A Geometric Analysis of Neural Collapse with Unconstrained Features
- DOI:
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Zhihui Zhu;Tianyu Ding;Jinxin Zhou;Xiao Li;Chong You;Jeremias Sulam;Qing Qu
- 通讯作者:Zhihui Zhu;Tianyu Ding;Jinxin Zhou;Xiao Li;Chong You;Jeremias Sulam;Qing Qu
Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training
- DOI:
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Sheng Liu;Xiao Li;Yuexiang Zhai;Chong You;Zhihui Zhu;C. Fernandez‐Granda;Qing Qu
- 通讯作者:Sheng Liu;Xiao Li;Yuexiang Zhai;Chong You;Zhihui Zhu;C. Fernandez‐Granda;Qing Qu
On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features
- DOI:10.48550/arxiv.2203.01238
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Jinxin Zhou-;Xiao Li;Tian Ding;Chong You;Qing Qu;Zhihui Zhu
- 通讯作者:Jinxin Zhou-;Xiao Li;Tian Ding;Chong You;Qing Qu;Zhihui Zhu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhihui Zhu其他文献
GM1 up-regulates Ubiquilin 1 expression in human neuroblastoma cells and rat cortical neurons
GM1 上调人神经母细胞瘤细胞和大鼠皮质神经元中泛素 1 的表达
- DOI:
10.1016/j.neulet.2006.08.005 - 发表时间:
2006 - 期刊:
- 影响因子:2.5
- 作者:
Zhonghua Liu;Y. Ruan;W. Yue;Zhihui Zhu;T. Hartmann;K. Beyreuther;Dai Zhang - 通讯作者:
Dai Zhang
Longitudinal sliding resistance characteristics of the WJ-8 conventional resistance fastner
WJ-8常规抗拉扣件的纵向抗滑动特性
- DOI:
10.1177/0954409721998908 - 发表时间:
2021-02 - 期刊:
- 影响因子:2
- 作者:
Wang Di;Abdulmumin Ahmed Shuaibu;Zhihui Zhu;Zhiping Zeng;Zhihua Lin - 通讯作者:
Zhihua Lin
Research of Load and Structural Direct Calculation on Flat-Type River-Sea-Going Ship
平板型江海船舶荷载与结构直接计算研究
- DOI:
10.17265/2328-2142/2015.05.002 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Zhiyong Pei;Zhihui Zhu;Weiguo Wu - 通讯作者:
Weiguo Wu
2010 2nd International Conference on Industrial Mechatronics and Automation Fault Location in Power Transmission Line Based on Isvr
2010第二届基于Isvr的输电线路工业机电一体化与自动化故障定位国际会议
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Zhihui Zhu - 通讯作者:
Zhihui Zhu
Computational and Statistical Guarantees for Tensor-on-Tensor Regression with Tensor Train Decomposition
张量序列分解的张量对张量回归的计算和统计保证
- DOI:
10.48550/arxiv.2306.00897 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhen Qin;Zhihui Zhu - 通讯作者:
Zhihui Zhu
Zhihui Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhihui Zhu', 18)}}的其他基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 20.55万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Deep Sparse Models: Analysis and Algorithms
合作研究:CIF:小型:深度稀疏模型:分析和算法
- 批准号:
2240708 - 财政年份:2022
- 资助金额:
$ 20.55万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Structured Inference and Adaptive Measurement Design in Indirect Sensing Systems
合作研究:CIF:媒介:间接传感系统中的结构化推理和自适应测量设计
- 批准号:
2241298 - 财政年份:2022
- 资助金额:
$ 20.55万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Structured Inference and Adaptive Measurement Design in Indirect Sensing Systems
合作研究:CIF:媒介:间接传感系统中的结构化推理和自适应测量设计
- 批准号:
2106881 - 财政年份:2021
- 资助金额:
$ 20.55万 - 项目类别:
Standard Grant
相似国自然基金
基于FRET受体上升时间的单分子高精度测量方法研究
- 批准号:22304184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
- 批准号:52373161
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
- 批准号:82304416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
- 批准号:82373255
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
- 批准号:82300623
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 20.55万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 20.55万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 20.55万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 20.55万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 20.55万 - 项目类别:
Standard Grant