RI: Small: Collaborative Research: Evolutionary Approach to Optimal Morphology of Transformable Soft Robots

RI:小型:协作研究:可变形软机器人最佳形态的进化方法

基本信息

项目摘要

The overall objective of the project is to leverage the principles of evolution in order to develop a new type of complex soft robots (robots that are constructed from compliant material) that can change their shape and mechanical properties to assume different forms in order to overcome environmental challenges such as uneven terrain. The motivation comes from the ways animals achieve efficient locomotion in their habitats by varying body shape and mechanical properties as a result of evolution over millions of years. Based on prior numerical results, the investigators hypothesize that highly adaptable locomotion can be achieved when given enough complexity in terms of shape deformation and mechanical properties. Current bioinspired soft robots, however, have limited capability to investigate such hypothesis. One key goal in this proposal is to develop innovative soft robotic platforms to study, for the first time, these numerical findings. The planned research has the potential to significantly enhance the functionality, adaptability, and versality of high-dimensional soft robots. The broader impact would be significant in several areas where soft robots have shown promise, particularly in inspection operations and search-and-rescue missions. The project is also expected to have a significant educational impact by engaging undergraduate students in the planned research activities and developing course content and new courses geared towards soft robots. Outreach efforts focus on workshops, public lectures, and engagements with elementary, middle, and high schools to foster collaborations with the local communities. The planned research is poised to unlock the evolutionary secrets of biological systems and open the door for the next generation of energy-efficient, adaptable, versatile, and human-friendly robots. To meet these goals, investigators propose to develop novel transformable and stiffness controllable soft robots and apply evolutionary computing to generate optimal morphological and stiffness trajectories for locomotion. The investigators employ evolutionary computing-based learning models to circumvent the curse of dimensionality associated with complex soft robotic systems and develop a comprehensive framework for developing optimal and robust control schemes and testing thereof using a series of rigorous experimental evaluations. This project is jointly funded by the Robust Intelligence (RI) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的总体目的是利用进化原理,以开发一种新型的复杂软机器人(由兼容的材料构建的机器人),这些机器人可以改变其形状和机械性能,以采用不同的形式,以克服环境挑战,例如不稳定的地形。 动机源于动物在数百万年内的进化中通过变化的身体形状和机械性能在其栖息地中实现有效的运动的方式。 基于先前的数值结果,研究人员假设在形状变形和机械性能方面具有足够的复杂性时,可以实现高度适应的运动。 但是,当前的生物启发的软机器人的研究能力有限。该提案中的一个关键目标是开发创新的软机器人平台,以首次研究这些数字发现。计划的研究有可能显着增强高维软机器人的功能,适应性和价值。在软机器人表现出希望的多个领域,尤其是在检查操作和搜索任务中,更广泛的影响将是重大的。预计该项目还会通过使本科生参与计划的研究活动,开发课程内容和针对软机器人的新课程,从而产生重大的教育影响。外展工作的重点是与小学,中学和高中的研讨会,公开演讲以及与当地社区的合作。该计划的研究有望解锁生物系统的进化秘密,并为下一代节能,适应性,多功能和人类友好的机器人打开大门。为了实现这些目标,研究人员建议开发可转换和刚度可控的软机器人,并应用进化计算来生成最佳的形态学和刚度轨迹进行运动。研究人员采用基于进化计算的学习模型来规避与复杂的软机器人系统相关的维数的诅咒,并开发了一个全面的框架,以使用一系列严格的实验评估来开发最佳和鲁棒的控制方案并进行测试。该项目由鲁棒情报(RI)共同资助,既定的竞争研究(EPSCOR)的既定计划。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准来通过评估来获得支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modular Controllers Facilitate the Co-Optimization of Morphology and Control in Soft Robots
模块化控制器促进软机器人形态和控制的协同优化
Coping with seasons: evolutionary dynamics of gene networks in a changing environment
应对季节:不断变化的环境中基因网络的进化动态
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Cheney其他文献

Epidemiology of <em>Connectional Silence</em> in specialist serious illness conversations
  • DOI:
    10.1016/j.pec.2021.10.032
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Cailin J. Gramling;Brigitte N. Durieux;Laurence A. Clarfeld;Ali Javed;Jeremy E. Matt;Viktoria Manukyan;Tess Braddish;Ann Wong;Joseph Wills;Laura Hirsch;Jack Straton;Nicholas Cheney;Margaret J. Eppstein;Donna M. Rizzo;Robert Gramling
  • 通讯作者:
    Robert Gramling
The Resume Paradox: Greater Language Differences, Smaller Pay Gaps
简历悖论:语言差异越大,薪酬差距越小
  • DOI:
    10.48550/arxiv.2307.08580
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Minot;Marc Maier;Bradford Demarest;Nicholas Cheney;C. Danforth;P. Dodds;M. Frank
  • 通讯作者:
    M. Frank
Nature is resource, playground, and gift: What artificial intelligence reveals about human–Nature relationships
自然是资源、游乐场和礼物:人工智能揭示了人与自然的关系
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Rachelle K. Gould;Bradford Demarest;Adrian Ivakhiv;Nicholas Cheney
  • 通讯作者:
    Nicholas Cheney
Behavioral Patterns in a Disease Spreading Simulation
疾病传播模拟中的行为模式
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ollin Langle;Scott C. Merril;E. Clark;G. Bucini;Tung;T. Shrum;C. Koliba;A. Zia;Julia M. Smith;Nicholas Cheney
  • 通讯作者:
    Nicholas Cheney
EVO-SCHIRP: Evolved Secure Swarm Communications
EVO-SCHIRP:演进的安全群体通信

Nicholas Cheney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Cheney', 18)}}的其他基金

CAREER: An Embodied Intelligence Approach to Neural Architecture Search
职业:神经架构搜索的具身智能方法
  • 批准号:
    2239691
  • 财政年份:
    2023
  • 资助金额:
    $ 22.9万
  • 项目类别:
    Standard Grant

相似国自然基金

基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
  • 批准号:
    61661005
  • 批准年份:
    2016
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
  • 批准号:
    61301143
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
  • 批准号:
    81072465
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于小世界网络的传感器网络研究
  • 批准号:
    60472059
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 22.9万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 22.9万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 22.9万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 22.9万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232054
  • 财政年份:
    2023
  • 资助金额:
    $ 22.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了