FET: Small: Collaborative Research: A Probability Correlator for All-Magnetic Probabilistic Computing: Theory and Experiment

FET:小型:协作研究:全磁概率计算的概率相关器:理论与实验

基本信息

  • 批准号:
    2006753
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Probabilistic computing is a computing paradigm that can solve certain problems more efficiently than traditional digital computing. While digital computing deals with deterministic binary bits that are either 0 or 1, probabilistic computing deals with probabilistic bits (p- bits) that are sometimes 0 and sometimes 1. This is distinct from quantum computing that deals with quantum bits (q-bits) which are a superposition of 0 and 1 (and hence a mixture of both 0 and 1 all the time). Quantum computing usually requires the most hardware resources and digital computing the least, with probabilistic computing between the two. Most of the hardware resources in probabilistic computing are devoted to generating specific correlations between two or more p-bit streams. This project will study and demonstrate a system that will greatly reduce the hardware burden associated with generating correlations. The results will make probabilistic computing much more efficient than it currently is. The project will educate K-12, undergraduate, and graduate students in this field to increase the pool of skilled scientists and engineers while advancing the field of computing.One of the major challenges in probabilistic computing is the complex hardware needed to generate required correlations between probabilistic bit streams. This hardware usually consists of microcontrollers, analog-to-digital converters, shift registers, etc., that consume significant power and vastly expand the system’s footprint on a chip. In this project, an ultra-compact and extremely energy-efficient correlator or anti-correlator will be studied and demonstrated that can generate tunable degrees of anti-correlation between two p-bit streams. The approach is implemented with two magnetic tunnel junctions (MTJs) whose soft layers are in close proximity and hence dipole-coupled. Bit states are encoded in the resistance states (high or low) of the MTJs. One MTJ generates a p-bit when driven by a spin-polarized current delivering a spin-transfer-torque. The current sets the resistance state high or low with a probability determined by its magnitude, while the bit state of the other MTJ is determined by dipole coupling with the first. Very strong dipole coupling will result in perfect anti-correlation, while very weak dipole coupling will result in no correlation. The effect of dipole coupling will be controlled by applying (electrically generated) local strain to the second MTJ, which modulates its internal energy barrier, thereby modulating the degree of anti-correlation between the p-bits from 0% to 100%. This project will result in new understanding of devices that use emerging nanomagnetic physics for the next generation of computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
概率计算是一种计算范式,可以比传统数字计算更有效地解决某些问题。虽然数字计算涉及0或1的确定性二进制位,但概率计算涉及有时为0,有时为1的概率位(p- lits)。这与量子计算不同的量子计算与量子位(q-bits)的量子计算不同,这些计算是0和1的叠加的量子(Q-bits)(并且是0和1的混合物)。量子计算通常需要最多的硬件资源和数字计算,而两者之间的概率计算。概率计算中的大多数硬件资源都致力于在两个或多个p位流之间生成特定的相关性。该项目将研究并展示一个系统,该系统将大大减轻与生成相关性相关的硬件负担。结果将使概率计算比目前更有效。该项目将教育该领域的K-12,本科生和研究生,以增加熟练的科学家和工程师的库,同时推进计算领域。概率计算中的主要挑战之一是在概率流中产生所需的相关性所需的复杂硬件。该硬件通常由微控制器,模数转换器,换档寄存器等组成,这些寄存器会消耗大量功率,并在芯片上大大扩展了系统的足迹。在这个项目中,将研究一个超紧凑且极其节能的相关器或抗相关器,并证明可以在两个P-PIT流之间产生可调的抗可相关程度。该方法是用两个磁性隧道连接(MTJ)实现的,这些磁力隧道连接处的软层紧邻,因此偶极耦合。位状态在MTJ的电阻状态(高或低)中编码。当由自旋偏振电流驱动时,一个MTJ会产生P-PIT。电流以由其大小确定的概率确定的电阻状态高或低,而另一MTJ的位状态是通过偶极子与第一个偶联来确定的。非常强的偶极子耦合将导致完美的抗相关性,而非常弱的偶极耦合将无相关性。偶极子耦合的效果将通过将(电产生的)局部应变应用于第二个MTJ来控制,该局部应变调节其内部能屏障,从而调节p-lits之间的抗相关程度从0%到100%至100%。该项目将使人们对使用新兴纳米磁物理学进行下一代计算的设备有了新的了解。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,通过评估被认为是珍贵的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Random Bitstream Generation Using Voltage-Controlled Magnetic Anisotropy and Spin Orbit Torque Magnetic Tunnel Junctions
  • DOI:
    10.1109/jxcdc.2022.3231550
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Samuel Liu;J. Kwon;Paul W. Bessler;S. Cardwell;Catherine D. Schuman;J. D. Smith;J. Aimone;S. Misra;J. Incorvia
  • 通讯作者:
    Samuel Liu;J. Kwon;Paul W. Bessler;S. Cardwell;Catherine D. Schuman;J. D. Smith;J. Aimone;S. Misra;J. Incorvia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jean Anne Incorvia其他文献

Jean Anne Incorvia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jean Anne Incorvia', 18)}}的其他基金

Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FET: Small: Hybrid Electrical, Ionic, and Biocompatible Artificial Synaptic Transistors
FET:小型:混合电气、离子和生物相容性人工突触晶体管
  • 批准号:
    2246855
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: 2D Ambipolar Machine Learning & Logical Computing Systems
合作研究:2D 双极机器学习
  • 批准号:
    2154285
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Capturing Biological Behavior in Three-Terminal Magnetic Tunnel Junction Synapses and Neurons for Fully Spintronic Neuromorphic Computing
职业:捕捉三端磁隧道连接突触和神经元的生物行为,以实现全自旋电子神经形态计算
  • 批准号:
    1940788
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
FET: Small: Collaborative Research: Integrated Spintronic Synapses and Neurons for Neuromorphic Computing Circuits - I(SNC)^2
FET:小型:协作研究:用于神经形态计算电路的集成自旋电子突触和神经元 - I(SNC)^2
  • 批准号:
    1910997
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
  • 批准号:
    61661005
  • 批准年份:
    2016
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
  • 批准号:
    61301143
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
  • 批准号:
    81072465
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于小世界网络的传感器网络研究
  • 批准号:
    60472059
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403559
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403560
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329938
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了