CAREER: Unifying Sensing, Machine Perception and Control for High-precision Micromanufacturing

职业:统一传感、机器感知和控制以实现高精度微制造

基本信息

  • 批准号:
    1943801
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant investigates machine learning-based sensing and control methods to improve the efficiency and quality of scalable and high-precision subtractive and additive micromanufacturing processes. Machine learning-based methods take advantage of massive amounts of data collected from sensors and actuators to discover patterns and draw inference using mathematical algorithms and statistical models. This represents a new avenue for innovation in process monitoring and control for emerging micromanufacturing technologies (e.g., roll-to-roll printing of flexible electronics) where prior knowledge is limited but sensor data is rich. By leveraging advanced machine learning methods that are guided by physical manufacturing knowledge, this research increases understanding of sensing-based control, thus enabling significant enhancement in the process performance, stability and adaptiveness required for high-precision and high-rate manufacturing. Ultimately this work benefits society by enabling next-generation manufacturing that is more precise, more reliable and that produces more complex products with less material waste, lower defect rates, and higher efficiency. The knowledge obtained from this research is used to support the education and training of future manufacturing scientists and engineers recruited from a diverse and dynamic group that includes underrepresented minorities and women in this field.The goal of this project is to advance the fundamental understanding of data-driven machine learning-based precision control for micromanufacturing processes. The novel unified framework and methods developed in this research transform state-of-the-art process control from a model-based standard to a data-driven model-free paradigm, ultimately pushing new levels of accuracy and precision of complex micromanufacturing systems. The major innovation involves a novel sensing-perception-learning-control framework that leads to meeting the following research objectives: 1) create a low-dimensional and low-noise latent state representation from abundant multimodal sensor data for process state estimation through probabilistic deep learning methods, and provide fundamental knowledge required to realize high-quality monitoring; 2) establish a novel Perception-based Iterative Learning Control (PILC) method with controllers to achieve unprecedented accuracy in precision process control, and 3) experimentally demonstrate and validate the unified framework and a set of sensor-based deep inference and learning-based control algorithms on two specific advanced micromanufacturing processes, ion-mill etching (subtractive) and roll-to-roll gravure printing (additive). The fundamental understandings directly advance the real-time control capability of high-precision manufacturing processes with tighter tolerance, and guide potential routes for achieving manufacturing capabilities augmented by sensing technologies and advanced data analytics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)资助研究基于机器学习的传感和控制方法,以提高可扩展、高精度减材和增材微制造工艺的效率和质量。 基于机器学习的方法利用从传感器和执行器收集的大量数据来发现模式并使用数学算法和统计模型进行推断。 这代表了新兴微制造技术(例如柔性电子设备的卷对卷印刷)过程监控和控制创新的新途径,其中先验知识有限,但传感器数据丰富。通过利用以物理制造知识为指导的先进机器学习方法,这项研究增进了对基于传感的控制的理解,从而显着提高了高精度和高速率制造所需的工艺性能、稳定性和适应性。 最终,这项工作通过实现更精确、更可靠、生产更复杂的产品、更少的材料浪费、更低的缺陷率和更高的效率来造福社会。从这项研究中获得的知识用于支持未来制造科学家和工程师的教育和培训,这些科学家和工程师是从多元化和充满活力的群体中招募的,其中包括该领域代表性不足的少数族裔和女性。该项目的目标是增进对数据的基本理解-驱动的基于机器学习的微制造过程的精确控制。本研究开发的新颖的统一框架和方法将最先进的过程控制从基于模型的标准转变为数据驱动的无模型范式,最终将复杂微制造系统的准确性和精度推向新的水平。主要创新涉及一种新颖的感知-感知-学习-控制框架,该框架可以满足以下研究目标:1)从丰富的多模态传感器数据中创建低维和低噪声的潜在状态表示,用于通过概率深度学习进行过程状态估计方法,并提供实现高质量监测所需的基础知识; 2)建立一种新颖的基于感知的迭代学习控制(PILC)方法与控制器,以实现前所未有的精密过程控制精度,以及3)实验演示和验证统一框架和一套基于传感器的深度推理和基于学习的控制两种特定的先进微制造工艺的算法,即离子铣蚀刻(减法)和卷对卷凹版印刷(增材)。 这些基本认识直接提升了具有更严格公差的高精度制造工艺的实时控制能力,并指导了通过传感技术和先进数据分析增强制造能力的潜在途径。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Variational Autoencoder Classifier for Intelligent Fault Diagnosis Adaptive to Unseen Fault Categories
用于适应未见故障类别的智能故障诊断的深度变分自编码器分类器
  • DOI:
    10.1109/tr.2021.3090310
  • 发表时间:
    2021-07-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Anqi He;Xiaoning Jin
  • 通讯作者:
    Xiaoning Jin
Data-Driven Model Predictive Control for Roll-to-Roll Process Register Error
卷对卷工艺套准误差的数据驱动模型预测控制
  • DOI:
    10.1115/iam2022-96840
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shah, Karan;He, Anqi;Wang, Zifeng;Du, Xian;Jin, Xiaoning
  • 通讯作者:
    Jin, Xiaoning
Spatial-Terminal Iterative Learning Control for Registration Error Elimination in High-Precision Roll-to-Roll Printing Systems
用于消除高精度卷对卷印刷系统中套准误差的空间终端迭代学习控制
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoning Jin其他文献

Chiral porous organic frameworks and their application in enantioseparation.
Natural Scene Text Detection Based on Deep Supervised Fully Convolutional Network
基于深度监督全卷积网络的自然场景文本检测
Optimal Parameters Design for Manufacturability under Unknown Feasibility Constraints
未知可行性约束下可制造性的最优参数设计
An integrated physical-based and parameter learning method for ship energy prediction under varying operating conditions
一种基于物理和参数学习的集成方法,用于不同操作条件下的船舶能量预测
Failure Detection and Remaining Life Estimation for Ion Mill Etching Process Through Deep-Learning Based Multimodal Data Fusion
通过基于深度学习的多模态数据融合进行离子磨蚀刻过程的故障检测和剩余寿命估计

Xiaoning Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoning Jin', 18)}}的其他基金

Manufacturing USA: Precision Alignment of Roll-to-Roll Printing of Flexible Paper Electronics Through Modeling and Virtual Sensor-based Control
美国制造:通过建模和基于虚拟传感器的控制实现柔性纸电子产品卷对卷印刷的精确对准
  • 批准号:
    1907250
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于边界控制的网络化抛物型偏微分系统一致性研究
  • 批准号:
    62303163
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向公平性与准确性统一的推荐方法研究:基于模型偏差消解视角
  • 批准号:
    72301239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向复杂场景的非线性多智能体系统一致性分层控制与优化
  • 批准号:
    62303393
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多精度目标追踪的多模态统一模型
  • 批准号:
    62302328
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
轨道车辆典型焊接结构复合型裂纹扩展机理及统一描述方法研究
  • 批准号:
    52375159
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Dual Reinforcement Learning: A Unifying Framework with Guarantees
职业:双重强化学习:有保证的统一框架
  • 批准号:
    2340651
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
UNIfying Grid-FOllowing And Grid-foRMing Control In Inverter-based Resources (UNIFORM)
统一基于逆变器的资源中的网格跟随和网格形成控制(UNIFORM)
  • 批准号:
    EP/Y001575/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
A unifying model for ion exchange membranes – towards a low carbon future
离子交换膜的统一模型 — 迈向低碳未来
  • 批准号:
    DP240101405
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
UKRI/BBSRC-NSF/BIO: Unifying Pfam protein sequence and ECOD structural classifications with structure models
UKRI/BBSRC-NSF/BIO:通过结构模型统一 Pfam 蛋白质序列和 ECOD 结构分类
  • 批准号:
    BB/X012492/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
CAREER: Unifying Neuroscience and Biomechanics Paradigms for Modeling Brain and Muscle Responses to Mechanical Impacts
职业:统一神经科学和生物力学范式,模拟大脑和肌肉对机械冲击的反应
  • 批准号:
    2239110
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了