Collaborative Research: Quantum acoustics for optomechanical transduction and entanglement of solid-state spin qubits

合作研究:用于光机械传导和固态自旋量子位纠缠的量子声学

基本信息

  • 批准号:
    2006103
  • 负责人:
  • 金额:
    $ 46.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

Future quantum computers will need to utilize different physical types of qubits that need to communicate and convert between each other with high fidelity and high efficiency. While photons are ideal for quantum communication, different qubit systems couple to photons of vastly different frequency ranges. The strain field generated by the mechanical wave in a solid-state material is a promising approach to enable coupling with a broad range of qubits with theoretically high efficiency. With a traveling velocity of five orders of magnitude lower than photons, acoustic waves are ideal for quantum interconnect between multiple qubits. The quantum acoustic technology developed in this project and the integration with NV-defect center qubits is an essential first step toward a chip-scale hybrid, multiple qubit systems. The proposed research both addresses the imminent issue of frequency inhomogeneity that has been plaguing solid-state optical qubits and explores the frontier of strong coupling of mechanical modes with spin qubits. The project will make significant advances from previous studies of discrete systems to realizing a monolithic quantum system that includes waveguides, optical and acoustic cavities, and acoustic transducers to directly interface with qubits, all integrated on a novel material platform. The approach offers a path to the realization of the integrated quantum computing system based on hybrid solid-state qubits interconnected with photons and phonons. The research leverages the tremendous technological development in the acoustic MEMS technology and advances it to the quantum regime, with the potential outcome that can impact both quantum information science and microwave photonics for classical communication. Education and outreach activities aim to increase the participation of students from underrepresented groups and improve the diversity of the STEM workforce and include course development in advanced quantum computing and K-12 science outreach programs with publicly accessible online courses. Technical Abstract:The project aims to develop a novel integrated quantum acoustic device platform for optomechanical transduction and quantum state manipulation of solid-state spin qubits based on defect centers in diamond. The integrated devices will be built on the high-performance heterogeneous material platform of gallium phosphide (GaP) on the crystalline diamond. The platform uniquely utilizes the layer of piezoelectric GaP for the dual functions of optical waveguiding and acoustic wave generation and guiding, thereby to achieve tremendously enhanced acousto-optic interaction. The effort will include three main thrusts. The first thrust will realize integrated acousto-optic frequency shifter (AOFS) to address the optical frequency inhomogeneity problem of qubits based on defect centers. AOFS can achieve single-sideband, carrier-suppressed frequency shift of photons from qubits freely over a range of ±3GHz and with an efficiency better than 80%. The second thrust will investigate the coupling of itinerant acoustic waves to ensembles and single defect centers. The acoustic coupling strength will be enhanced to reach the strong coupling regime and realize time-dependent control over the states of the qubits. The final thrust will realize the strong coupling of acoustic modes confined in a high-Q cavity with single defect centers embedded therein. Quantum state manipulation and quantum entanglement of the qubits by utilizing the acoustic mode will be achieved. Ensembles of NV-centers coupled to the cavity acoustic mode in the strong-coupling regime and novel physics effects in this regime will be explored.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来的量子计算机将需要利用需要以高保真和高效率相互交流和转换的不同物理类型的量子。虽然照片是量子通信的理想选择,但不同的Qubit Systems夫妇与频率范围截然不同的照片。机械波在固态材料中产生的应变场是一种有前途的方法,可以使与理论上高效率的广泛Qubits耦合。与照片低五个数量级的行进速度,声波非常适合多量之间的量子互连。该项目开发的量子声技术以及与NV-Defect Center Qubits的集成是迈向芯片尺度混合动力,多个量子系统的重要第一步。拟议的研究都解决了迫在眉睫的不均匀性问题,该问题一直困扰着固态光盘,并探索了与自旋Qubits的机械模式强耦合的边界。该项目将从先前对离散系统的研究到实现包括波导,光学和声学空腔以及声音传感器的整体量子系统的重大进展,再到与数量直接接口,所有量子都集成在新型材料平台上。该方法为基于与照片和短语互连的混合固态数量而实现的集成量子计算系统的途径提供了途径。该研究利用了声学内存技术的巨大技术发展,并将其推进到量子制度,并具有可能影响量子信息科学和微波光子学的潜在结果。教育和外展活动旨在增加代表性不足的群体的学生的参与,并改善STEM劳动力的多样性,并包括高级量子计算和K-12科学外展计划的课程开发,并提供公开访问的在线课程。技术摘要:该项目旨在开发一个新型的集成量子声音设备平台,用于基于Diamond中缺陷中心的固态旋转量的光机械翻译和量子状态操纵。集成的设备将建立在晶体钻石上的磷化物(GAP)的高性能异质材料平台上。该平台独特地利用了压电间隙层,用于光学波和声波产生和指导的双重功能,从而实现了极大的增强的Acoustico-Ococtic相互作用。这项工作将包括三个主要推力。第一个推力将实现集成的Ocoustico-optic频率变速子(AOF),以解决基于缺陷中心的Qubits的光学频率不均匀性问题。 AOF可以在±3GHz范围内从Qubits中实现光(Qubits)的载流子抑制的频率转移,并且效率高于80%。第二个推力将研究巡回波浪与合奏和单个缺陷中心的耦合。声音耦合强度将增强以达到强耦合方案,并实现对量子状态状态的时间依赖性控制。最终的推力将实现限制在高Q腔中的声学模式的强耦合,其中嵌入了单个缺陷中心。通过利用声学模式,将实现量子状态的操作和量子纠缠。将探索在强耦合方案和新型物理效应中,将探索NV中心的合并,并在该方案中耦合到腔声模式。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估被认为是宝贵的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tunable phononic coupling in excitonic quantum emitters
  • DOI:
    10.1038/s41565-023-01410-6
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    38.3
  • 作者:
    Ripin,Adina;Peng,Ruoming;Li,Mo
  • 通讯作者:
    Li,Mo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mo Li其他文献

Interpreting quantum coherence through a quantum measurement process
通过量子测量过程解释量子相干性
  • DOI:
    10.1103/physreva.96.052322
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Yao Yao;G. H. Dong;Xing Xiao;Mo Li;C. P. Sun
  • 通讯作者:
    C. P. Sun
Multi-plan formulation of hydropower generation considering uncertainty of wind power
考虑风电不确定性的水力发电多方案制定
  • DOI:
    10.1016/j.apenergy.2019.114239
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Yang Yuqi;Zhou Jianzhong;Liu Guangbiao;Mo Li;Wang Yongqiang;Jia Benjun;He Feifei
  • 通讯作者:
    He Feifei
Pathogenic memory Th2細胞とアレルギ-性炎症制御
致病性记忆 Th2 细胞与过敏性炎症控制
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mo Li;Shaoying Liu;中山俊憲
  • 通讯作者:
    中山俊憲
KAIMRC’S Second Therapeutics Discovery Conference
KAIMRC 第二届治疗药物发现会议
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Alehaideb;N. Mehyar;Mai Al Ajaji;M. Alassiri;Manal A. Alaamery;B. Debasi;B. Alghanem;Jahad Alghamdi;Bahauddeen M. Alrfaei;B. A. Somaie;A. Bakillah;Tlili Barhoumi;Yosra Boudjelal;Ibrahim Bushnak;M. Alfadhel;S. Gul;I. Islam;Mo Li;T. S. Lim;S. Massadeh;Lamis Mouyes;A. Nefzi;Atef Nehdi;W. Yue;A. Alaskar;M. Boudjelal
  • 通讯作者:
    M. Boudjelal

Mo Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mo Li', 18)}}的其他基金

U.S.-Japan University Partnership for Workforce Advancement and Research & Development in Semiconductors (UPWARDS) for the Future
美日大学劳动力发展和研究合作伙伴关系
  • 批准号:
    2329784
  • 财政年份:
    2023
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Continuing Grant
C: Photonic Engine to Accelerate Atomic Quantum Engineering (PEAQUE)
C:加速原子量子工程的光子引擎(PEAQUE)
  • 批准号:
    2134345
  • 财政年份:
    2021
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator-Track C: Chip-Scale Integrated Multibeam Steering System for Cold-Atom Quantum Computing
NSF 融合加速器-Track C:用于冷原子量子计算的芯片级集成多波束转向系统
  • 批准号:
    2040527
  • 财政年份:
    2020
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Standard Grant
CAREER: Integration of 2D materials for broadband silicon photonics
职业:宽带硅光子学二维材料的集成
  • 批准号:
    1915018
  • 财政年份:
    2018
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Standard Grant
Collaborative Research: Conformal and robust integrated infrared spectroscopic sensors
合作研究:共形且坚固的集成红外光谱传感器
  • 批准号:
    1854974
  • 财政年份:
    2018
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Standard Grant
Collaborative Research: Conformal and robust integrated infrared spectroscopic sensors
合作研究:共形且坚固的集成红外光谱传感器
  • 批准号:
    1708768
  • 财政年份:
    2017
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Standard Grant
Workshop: Bilateral Photonics Workshop of the National Science Foundation (NSF) and Ministry of Science and Technology (MOST), Taiwan, May 29-June 1, 2015
研讨会:美国国家科学基金会 (NSF) 和科学技术部 (MOST) 双边光子学研讨会,台湾,2015 年 5 月 29 日至 6 月 1 日
  • 批准号:
    1536097
  • 财政年份:
    2015
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Standard Grant
CAREER: Integration of 2D materials for broadband silicon photonics
职业:宽带硅光子学二维材料的集成
  • 批准号:
    1351002
  • 财政年份:
    2014
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Standard Grant
Workshop: Support to Speakers to Attend IEEE Photonics Society Topical Conference on Non-reciprocal Photonic Devices, Hawaii, July 8-10, 2013
研讨会:支持演讲者参加 IEEE 光子学会非互易光子器件专题会议,夏威夷,2013 年 7 月 8 日至 10 日
  • 批准号:
    1339002
  • 财政年份:
    2013
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Standard Grant
Integrated surface acousto-optical devices on piezoelectric aluminum nitride thin films
压电氮化铝薄膜上的集成表面声光器件
  • 批准号:
    1307601
  • 财政年份:
    2013
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Standard Grant

相似国自然基金

量子启发的复合语义视频实例检索技术研究
  • 批准号:
    62372339
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于量子化学计算构建的荧光传感器阵列对西红花快速鉴定新方法的研究
  • 批准号:
    82374000
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度学习算法的近地时空光量子照明与测距研究
  • 批准号:
    12374408
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于时域分辨的单个量子点的双激子结合能研究
  • 批准号:
    62305201
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
  • 批准号:
    12305031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Standard Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 46.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了