SHF: Small: Automatic, adaptive and massive parallel data processing on GPU/RDMA clusters in both synchronous and asynchronous modes

SHF:小型:在同步和异步模式下在 GPU/RDMA 集群上自动、自适应和大规模并行数据处理

基本信息

  • 批准号:
    2005884
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The computing ecosystem in both hardware and software is in a critical transition time, coming from several technology crises and inevitable trends. First, the continued performance improvement in general-purpose processors is no longer realistic. Second, conventional processors are increasingly inefficient in both performance and power consumption for various data-intensive applications. Finally, the deep software stack that has been developed for several decades, from instruction-set architecture all the way to the programming layer in the existing ecosystem, has added cumbersome processing and even unnecessary overhead in computing. To address the above-mentioned issues, this project remedies the computing ecosystem in an accelerator-based way. GPU (Graphic Processing Unit) and RDMA (Remote Data Memory Access) are the two external hardware accelerators considered in the project. It aims to turn efficient asynchronous computing into a reality on clusters of hardware accelerators of GPU and RDMA adaptively and automatically by removing three technical barriers in the existing ecosystem: (1) the programming-model barrier, (2) the hardware abstraction barrier, and (3) the automation barrier. The project strives to make broad and transformational impact. It is expected to influence the data-processing research community with new algorithms and effective systems implementation, and influence industries to improve their production systems in their daily computing operations serving society. The developed algorithms, source code and measurements are available online for a public and wide usage, benefiting both industrial and academic researchers. The research training to both undergraduate and graduate students address the concerns of lacking hardware-acceleration and data-analytics professionals in information technology and computing industries. The curriculum development introduces related research results to classrooms and the outreach activities encourage high school students to be interested in computing related college education. The existing computing environment does not provide programming models for asynchronous execution. It is even harder for asynchronous programming on GPU/RDMA clusters. The execution-model difference between CPUs and GPUs makes the system lack a common hardware abstraction for GPU computing and for RDMA communication and management. Asynchronous programming is hard, and an automatic tool to ensure its correctness and efficiency is highly desirable. This research project bridges the gap between asynchronous computing and GPU/RDMA. It develops an autonomous memory pool (AMP) interfacing GPU/RDMA clusters, where an intermediate representation is proposed to abstract the GPU execution and AMP constructed by an RDMA. A set of intermediate representations are developed to support asynchronous programming, so that users can easily express asynchronous computing in programming. In addition, an intermediate representation is developed to allow conventional synchronous programming to become automated asynchronous execution code. The system is tested and evaluated using representative data-processing workloads on large GPU/RDMA clusters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
硬件和软件中的计算生态系统都来自几个技术危机和不可避免的趋势。首先,通用处理器的持续性能不再是现实的。其次,对于各种数据密集型应用程序,传统处理器的性能和功耗越来越低效率。最后,已经开发了几十年的深度软件堆栈,从教学集架构一直到现有生态系统中的编程层,都增加了繁琐的处理,甚至是计算中不必要的开销。为了解决上述问题,该项目以基于加速器的方式来补救计算生态系统。 GPU(图形处理单元)和RDMA(远程数据存储器访问)是项目中考虑的两个外部硬件加速器。它的目的是将有效的异步计算变成现实的GPU和RDMA硬件加速器簇,并通过删除现有生态系统中的三个技术障碍来自动自动自动:(1)编程模式屏障,(2)硬件抽象障碍物,以及(3)自动化障碍物。该项目致力于产生广泛而变革的影响。预计它将通过新算法和有效的系统实施影响数据处理研究社区,并影响行业以在为社会服务的日常计算运营中改善其生产系统。已开发的算法,源代码和测量可用于公共和广泛使用,从而使工业和学术研究人员受益。对本科和研究生的研究培训都解决了信息技术和计算行业缺乏硬件加速和数据分析专业人员的关注。课程开发将相关的研究结果引入教室,而外展活动鼓励高中生对计算相关的大学教育感兴趣。现有的计算环境不能为异步执行提供编程模型。在GPU/RDMA簇上的异步编程更加困难。 CPU和GPU之间的执行模式差异使该系统缺乏用于GPU计算以及RDMA通信和管理的常见硬件抽象。异步编程很难,并且是确保其正确性和效率的自动工具。该研究项目弥合了异步计算与GPU/RDMA之间的差距。它开发了一个自主内存池(AMP)接口GPU/RDMA群集,其中提出了一个中间表示来抽象GPU执行和由RDMA构建的AMP。开发了一组中间表示以支持异步编程,以便用户可以轻松地在编程中表达异步计算。此外,开发了一个中间表示,以允许常规同步编程成为自动化异步执行代码。该系统使用大型GPU/RDMA群集上的代表性数据处理工作负载进行了测试和评估。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automating Incremental and Asynchronous Evaluation for Recursive Aggregate Data Processing
DBSpinner: Making a Case for Iterative Processing in Databases
Mixer: Efficiently Understanding and Retrieving Visual Content at Web-Scale
  • DOI:
    10.14778/3476311.3476371
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mengbai Xiao;An Qin;Yongwei Wu;Xinjie Huang;Xiaodong Zhang
  • 通讯作者:
    Mengbai Xiao;An Qin;Yongwei Wu;Xinjie Huang;Xiaodong Zhang
Maze: A Cost-Efficient Video Deduplication System at Web-scale
An RDMA-enabled In-memory Computing Platform for R-tree on Clusters
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaodong Zhang其他文献

Surface morphology and kerf quality during fiber laser cutting of high volume fraction SiC particles-reinforced aluminum matrix composites
高体积分数SiC颗粒增强铝基复合材料光纤激光切割过程中的表面形貌和切口质量
Neotypification and phylogeny of Kalmusia
卡尔穆西亚的新型化和系统发育
  • DOI:
    10.11646/phytotaxa.176.1.16
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Ying Zhang;Jiaqi Zhang;Zhaodi Wang;Jacques Fourner;Pedro W. Crous;Xiaodong Zhang;Wenjing Li;Hiran A. Ariyawansa;Kevin D. Hyde
  • 通讯作者:
    Kevin D. Hyde
Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions
双离子顺序注入SiO2中CuZn合金纳米粒子的合成、热演化及光学性能
  • DOI:
    10.1016/j.jallcom.2012.09.099
  • 发表时间:
    2013-02
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Lihong Zhang;Xiaodong Zhang;Yanyan Shen;Changlong Liu
  • 通讯作者:
    Changlong Liu
Molecular dynamics investigation of thermo-physical properties and hydrogen-bonds of 1-ethyl-3-methylimidazolium dimethylphosphate-water system
1-乙基-3-甲基咪唑二甲基磷酸盐-水体系热物理性质和氢键的分子动力学研究
  • DOI:
    10.1016/j.molliq.2017.04.031
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Tianyu Li;Zongchang Zhao;Xiaodong Zhang
  • 通讯作者:
    Xiaodong Zhang
The comparison of EPC count and function in the situation of vascular repair at early and late stage
血管早期与晚期修复情况EPC数量及功能比较
  • DOI:
    10.1007/s11239-012-0851-2
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4
  • 作者:
    G. He;Hongmei Zhang;Xiaodong Zhang;Ding Li;Yanjun Zeng
  • 通讯作者:
    Yanjun Zeng

Xiaodong Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaodong Zhang', 18)}}的其他基金

Understanding the molecular basis of checkpoint response during DNA double-strand break repair
了解 DNA 双链断裂修复过程中检查点反应的分子基础
  • 批准号:
    MR/Y001192/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Medium: Hardware and Software Support for Memory-Centric Computing Systems
协作研究:SHF:中:以内存为中心的计算系统的硬件和软件支持
  • 批准号:
    2312507
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Elements: Sustained Innovation and Service by a GPU-accelerated Computation Tool for Applications of Topological Data Analysis
要素:GPU加速计算工具在拓扑数据分析应用中的持续创新和服务
  • 批准号:
    2310510
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: A New Direction of Research and Development to Fulfill the Promise of Computational Storage
合作研究:SHF:Medium:实现计算存储承诺的研发新方向
  • 批准号:
    2210753
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Travel: Travel Support for The 42nd IEEE International Conference on Distributed Computing Systems (ICDCS 2022)
差旅:第 42 届 IEEE 国际分布式计算系统会议 (ICDCS 2022) 差旅支持
  • 批准号:
    2139584
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Travel Support for the 39th IEEE International Conference on Distributed Computing Systems (ICDCS 19)
第 39 届 IEEE 国际分布式计算系统会议 (ICDCS 19) 的差旅支持
  • 批准号:
    1931341
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Inferring Marine Particle Properties from Polarized Volume Scattering Functions
合作研究:从偏振体散射函数推断海洋颗粒特性
  • 批准号:
    1917337
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Organisation and regulation of bacterial enhancer-binding proteins
细菌增强子结合蛋白的组织和调节
  • 批准号:
    BB/R018499/1
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Travel Support for the 38th IEEE International Conference on Distributed Computing Systems (ICDCS 18)
第 38 届 IEEE 国际分布式计算系统会议 (ICDCS 18) 的差旅支持
  • 批准号:
    1836366
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
REU Site: Undergraduate Research in Intelligent Autonomous Vehicles
REU 网站:智能自动驾驶汽车本科生研究
  • 批准号:
    1659813
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

自动化生产、人工智能与小微企业的市场进入——基于劳动者职业选择的视角
  • 批准号:
    72103098
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
自动化生产、人工智能与小微企业的市场进入---基于劳动者职业选择的视角
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
血液中自动披覆蛋白冠“马甲”的紫杉醇小分子自组装纳米药物的构建及其体内命运的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
三维属性直方图的概念与构建及其在海底小目标多波束前视声呐图像精细自动分割中的应用
  • 批准号:
    61661038
  • 批准年份:
    2016
  • 资助金额:
    44.0 万元
  • 项目类别:
    地区科学基金项目
小电流接地电网单相接地故障选线自动化的再研究
  • 批准号:
    50177007
  • 批准年份:
    2001
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

CCF: SHF: Small: Self-Adaptive Interference-Avoiding Wireless Receiver Hardware through Real-Time Learning-Based Automatic Optimization of Power-Efficient Integrated Circuits
CCF:SHF:小型:通过基于实时学习的高能效集成电路自动优化实现自适应干扰避免无线接收器硬件
  • 批准号:
    2218845
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
NSF-BSF: SHF: Small: Efficient, Automatic, and Trustworthy Smart Contract Verification
NSF-BSF:SHF:小型:高效、自动且值得信赖的智能合约验证
  • 批准号:
    2110397
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Automatic Generation of Cache Coherent Memory Systems for Multicore Processors
SHF:小型:自动生成多核处理器的缓存一致性内存系统
  • 批准号:
    2002737
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Automatic Qualitative and Quantitative Verification of CUDA Code
SHF:Small:CUDA代码的自动定性和定量验证
  • 批准号:
    2007784
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Automatic Exploration and Analysis of Software Performance Responses
SHF:小型:软件性能响应的自动探索和分析
  • 批准号:
    1908870
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了