SHF: Small: Automatic, adaptive and massive parallel data processing on GPU/RDMA clusters in both synchronous and asynchronous modes

SHF:小型:在同步和异步模式下在 GPU/RDMA 集群上自动、自适应和大规模并行数据处理

基本信息

  • 批准号:
    2005884
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The computing ecosystem in both hardware and software is in a critical transition time, coming from several technology crises and inevitable trends. First, the continued performance improvement in general-purpose processors is no longer realistic. Second, conventional processors are increasingly inefficient in both performance and power consumption for various data-intensive applications. Finally, the deep software stack that has been developed for several decades, from instruction-set architecture all the way to the programming layer in the existing ecosystem, has added cumbersome processing and even unnecessary overhead in computing. To address the above-mentioned issues, this project remedies the computing ecosystem in an accelerator-based way. GPU (Graphic Processing Unit) and RDMA (Remote Data Memory Access) are the two external hardware accelerators considered in the project. It aims to turn efficient asynchronous computing into a reality on clusters of hardware accelerators of GPU and RDMA adaptively and automatically by removing three technical barriers in the existing ecosystem: (1) the programming-model barrier, (2) the hardware abstraction barrier, and (3) the automation barrier. The project strives to make broad and transformational impact. It is expected to influence the data-processing research community with new algorithms and effective systems implementation, and influence industries to improve their production systems in their daily computing operations serving society. The developed algorithms, source code and measurements are available online for a public and wide usage, benefiting both industrial and academic researchers. The research training to both undergraduate and graduate students address the concerns of lacking hardware-acceleration and data-analytics professionals in information technology and computing industries. The curriculum development introduces related research results to classrooms and the outreach activities encourage high school students to be interested in computing related college education. The existing computing environment does not provide programming models for asynchronous execution. It is even harder for asynchronous programming on GPU/RDMA clusters. The execution-model difference between CPUs and GPUs makes the system lack a common hardware abstraction for GPU computing and for RDMA communication and management. Asynchronous programming is hard, and an automatic tool to ensure its correctness and efficiency is highly desirable. This research project bridges the gap between asynchronous computing and GPU/RDMA. It develops an autonomous memory pool (AMP) interfacing GPU/RDMA clusters, where an intermediate representation is proposed to abstract the GPU execution and AMP constructed by an RDMA. A set of intermediate representations are developed to support asynchronous programming, so that users can easily express asynchronous computing in programming. In addition, an intermediate representation is developed to allow conventional synchronous programming to become automated asynchronous execution code. The system is tested and evaluated using representative data-processing workloads on large GPU/RDMA clusters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于多次技术危机和不可避免的趋势,硬件和软件的计算生态系统正处于关键转型时期。首先,通用处理器的持续性能改进已不再现实。其次,对于各种数据密集型应用,传统处理器的性能和功耗效率越来越低。最后,现有生态系统中从指令集架构一直到编程层,发展了数十年的深层软件堆栈增加了繁琐的处理,甚至不必要的计算开销。为了解决上述问题,该项目通过基于加速器的方式来修复计算生态系统。 GPU(图形处理单元)和RDMA(远程数据内存访问)是该项目中考虑的两个外部硬件加速器。它旨在通过消除现有生态系统中的三个技术障碍:(1)编程模型障碍,(2)硬件抽象障碍,以及自适应地、自动地将高效的异步计算在GPU和RDMA硬件加速器集群上变成现实。 (3)自动化障碍。该项目致力于产生广泛的变革性影响。预计它将通过新算法和有效的系统实施来影响数据处理研究界,并影响各行业在服务社会的日常计算操作中改进其生产系统。开发的算法、源代码和测量结果可在线供公众广泛使用,使工业和学术研究人员受益。针对本科生和研究生的研究培训解决了信息技术和计算行业缺乏硬件加速和数据分析专业人员的问题。课程开发将相关研究成果引入课堂,外展活动鼓励高中生对计算机相关大学教育产生兴趣。现有的计算环境不提供异步执行的编程模型。 GPU/RDMA集群上的异步编程就更难了。 CPU 和 GPU 之间的执行模型差异使得系统缺乏用于 GPU 计算以及 RDMA 通信和管理的通用硬件抽象。异步编程是困难的,非常需要一个自动工具来确保其正确性和效率。该研究项目弥补了异步计算和 GPU/RDMA 之间的差距。它开发了一个连接 GPU/RDMA 集群的自主内存池 (AMP),其中提出了一种中间表示来抽象 GPU 执行和由 RDMA 构建的 AMP。开发了一组中间表示来支持异步编程,以便用户可以轻松地在编程中表达异步计算。此外,还开发了一种中间表示形式,以允许传统的同步编程变成自动化的异步执行代码。该系统使用大型 GPU/RDMA 集群上的代表性数据处理工作负载进行测试和评估。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automating Incremental and Asynchronous Evaluation for Recursive Aggregate Data Processing
DBSpinner: Making a Case for Iterative Processing in Databases
Mixer: Efficiently Understanding and Retrieving Visual Content at Web-Scale
  • DOI:
    10.14778/3476311.3476371
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mengbai Xiao;An Qin;Yongwei Wu;Xinjie Huang;Xiaodong Zhang
  • 通讯作者:
    Mengbai Xiao;An Qin;Yongwei Wu;Xinjie Huang;Xiaodong Zhang
Maze: A Cost-Efficient Video Deduplication System at Web-scale
NestGPU: Nested Query Processing on GPU
  • DOI:
    10.1109/icde51399.2021.00092
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sofoklis Floratos;Mengbai Xiao;Hao Wang-;Chengxin Guo;Yuan Yuan-Yuan;Rubao Lee;Xiaodong Zhang
  • 通讯作者:
    Sofoklis Floratos;Mengbai Xiao;Hao Wang-;Chengxin Guo;Yuan Yuan-Yuan;Rubao Lee;Xiaodong Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaodong Zhang其他文献

Microbial and nutritional regulation of high-solids anaerobic mono-digestion of fruit and vegetable wastes
果蔬废弃物高固体厌氧单消化的微生物和营养调节
  • DOI:
    10.1080/09593330.2017.1301571
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Hui Mu;Yan li;Yuxiao Zhao;Xiaodong Zhang;Dongliang Hua;Haipeng Xu;Fuqiang Jin
  • 通讯作者:
    Fuqiang Jin
Molecular dynamics investigation of thermo-physical properties and hydrogen-bonds of 1-ethyl-3-methylimidazolium dimethylphosphate-water system
1-乙基-3-甲基咪唑二甲基磷酸盐-水体系热物理性质和氢键的分子动力学研究
  • DOI:
    10.1016/j.molliq.2017.04.031
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Tianyu Li;Zongchang Zhao;Xiaodong Zhang
  • 通讯作者:
    Xiaodong Zhang
Surface morphology and kerf quality during fiber laser cutting of high volume fraction SiC particles-reinforced aluminum matrix composites
高体积分数SiC颗粒增强铝基复合材料光纤激光切割过程中的表面形貌和切口质量
Facile fabrication of stretchable and multifunctional thermoelectric composite fabrics with strain-enhanced self-powered sensing performance
轻松制造具有应变增强自供电传感性能的可拉伸多功能热电复合织物
  • DOI:
    10.1016/j.coco.2022.101275
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Xinyang He;Xiaodong Zhang;Honghua Zhang;Chengzu Li;Qingliang Luo;Xinxin Li;Liming Wang;Xiaohong Qin
  • 通讯作者:
    Xiaohong Qin
A low EVM zero-IF RF transmitter for cognitive radio application
用于认知无线电应用的低 EVM 零中频射频发射机
  • DOI:
    10.1007/s11767-011-0500-5
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaodong Zhang;Xiaowei Zhu;Jing Liu;Chang
  • 通讯作者:
    Chang

Xiaodong Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaodong Zhang', 18)}}的其他基金

Understanding the molecular basis of checkpoint response during DNA double-strand break repair
了解 DNA 双链断裂修复过程中检查点反应的分子基础
  • 批准号:
    MR/Y001192/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Medium: Hardware and Software Support for Memory-Centric Computing Systems
协作研究:SHF:中:以内存为中心的计算系统的硬件和软件支持
  • 批准号:
    2312507
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Elements: Sustained Innovation and Service by a GPU-accelerated Computation Tool for Applications of Topological Data Analysis
要素:GPU加速计算工具在拓扑数据分析应用中的持续创新和服务
  • 批准号:
    2310510
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: A New Direction of Research and Development to Fulfill the Promise of Computational Storage
合作研究:SHF:Medium:实现计算存储承诺的研发新方向
  • 批准号:
    2210753
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Travel: Travel Support for The 42nd IEEE International Conference on Distributed Computing Systems (ICDCS 2022)
差旅:第 42 届 IEEE 国际分布式计算系统会议 (ICDCS 2022) 差旅支持
  • 批准号:
    2139584
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Travel Support for the 39th IEEE International Conference on Distributed Computing Systems (ICDCS 19)
第 39 届 IEEE 国际分布式计算系统会议 (ICDCS 19) 的差旅支持
  • 批准号:
    1931341
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Inferring Marine Particle Properties from Polarized Volume Scattering Functions
合作研究:从偏振体散射函数推断海洋颗粒特性
  • 批准号:
    1917337
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Organisation and regulation of bacterial enhancer-binding proteins
细菌增强子结合蛋白的组织和调节
  • 批准号:
    BB/R018499/1
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Travel Support for the 38th IEEE International Conference on Distributed Computing Systems (ICDCS 18)
第 38 届 IEEE 国际分布式计算系统会议 (ICDCS 18) 的差旅支持
  • 批准号:
    1836366
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
REU Site: Undergraduate Research in Intelligent Autonomous Vehicles
REU 网站:智能自动驾驶汽车本科生研究
  • 批准号:
    1659813
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
  • 批准号:
    82304883
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
  • 批准号:
    82372561
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
  • 批准号:
    82373082
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
  • 批准号:
    82373304
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CCF: SHF: Small: Self-Adaptive Interference-Avoiding Wireless Receiver Hardware through Real-Time Learning-Based Automatic Optimization of Power-Efficient Integrated Circuits
CCF:SHF:小型:通过基于实时学习的高能效集成电路自动优化实现自适应干扰避免无线接收器硬件
  • 批准号:
    2218845
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
NSF-BSF: SHF: Small: Efficient, Automatic, and Trustworthy Smart Contract Verification
NSF-BSF:SHF:小型:高效、自动且值得信赖的智能合约验证
  • 批准号:
    2110397
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Automatic Generation of Cache Coherent Memory Systems for Multicore Processors
SHF:小型:自动生成多核处理器的缓存一致性内存系统
  • 批准号:
    2002737
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Automatic Qualitative and Quantitative Verification of CUDA Code
SHF:Small:CUDA代码的自动定性和定量验证
  • 批准号:
    2007784
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Automatic Exploration and Analysis of Software Performance Responses
SHF:小型:软件性能响应的自动探索和分析
  • 批准号:
    1908870
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了