CAREER: Robust Adaptive Optimization Algorithms for Differentially Private Learning

职业:用于差异化私人学习的鲁棒自适应优化算法

基本信息

  • 批准号:
    1943046
  • 负责人:
  • 金额:
    $ 52.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Privacy-preserving optimization algorithms are essential tools for solving machine learning (ML) problems while protecting the privacy of individuals in the datasets used for training ML models. Despite the recent advances, there is a lack of a theoretical foundation for understanding their performance and hence their use in practice is limited because of utility concerns. This project seeks to develop a theory to understand the performance of private optimizers and use it to guide the design of algorithms with reliable and robust performance. To this end, the project focuses on the three main challenges related to differentially private learning: (i) bridging the gap between theory and practice by developing a unified theoretical framework that can be used to better understand and explain the performance of private optimizers; (ii) applying the theory to guide the design of private optimizers whose privacy and utility guarantees have robustness to hyperparameter choices; (iii) extending the framework, established principles, and algorithms to deep learning models. The project’s novelty is in providing a unified theoretical framework that enables rigorous performance analysis of private optimizers. By providing a theoretical foundation, this project will help accelerate research on differentially private learning, for example, by allowing the principled design of robust and reliable training algorithms. More broadly, this project has a great potential to accelerate advances in other domains of science by providing tools to share and analyze sensitive data without having to sacrifice the privacy of individuals. The project involves both graduate and undergraduate students in this research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
隐私保护优化算法是解决机器学习 (ML) 问题的重要工具,同时保护用于训练 ML 模型的数据集中的个人隐私,尽管最近取得了进展,但仍缺乏理解其性能的理论基础。由于实用性问题,它们在实践中的使用受到限制。该项目旨在开发一种理论来理解私有优化器的性能,并用它来指导具有可靠和稳健性能的算法的设计。与差别化私人学习相关的主要挑战:(i)通过开发一个统一的理论框架来弥合理论与实践之间的差距,该框架可用于更好地理解和解释私有优化器的性能;(ii)应用该理论来指导私有优化器的设计,其隐私和效用保证对超参数具有鲁棒性; (iii) 将框架、既定原理和算法扩展到深度学习模型。该项目的新颖之处在于提供了一个统一的理论框架,可以对私有优化器进行严格的性能分析。通过提供理论基础,该项目将有助于加速差异化研究。私人学习,例如,通过更广泛地允许稳健可靠的训练算法的原则性设计,该项目具有巨大的潜力,可以通过提供共享和分析敏感数据的工具而无需牺牲个人隐私,从而加速其他科学领域的进步。该项目涉及研究生和本科生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differentially Private Goodness-of-Fit Tests for Continuous Variables
连续变量的差分私人拟合优度检验
  • DOI:
    10.1016/j.ecosta.2021.09.007
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Seungwoo Kwak;Jeongyoun Ahn;Jaewoo Lee;Cheolwoo Park
  • 通讯作者:
    Cheolwoo Park
Scaling up Differentially Private Deep Learning with Fast Per-Example Gradient Clipping
通过快速的每示例梯度裁剪来扩展差分隐私深度学习
Wasserstein Adversarial Transformer for Cloud Workload Prediction
用于云工作负载预测的 Wasserstein Adversarial Transformer
Rényi Differentially Private ADMM for Non-Smooth Regularized Optimization
用于非平滑正则优化的 Rényi 差分私有 ADMM
Stochastic Adaptive Line Search for Differentially Private Optimization
用于差分隐私优化的随机自适应线搜索
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaewoo Lee其他文献

Effect of heat treatment of spin-cast solar silicon sheet on crystalline defects
旋铸太阳能硅片热处理对晶体缺陷的影响
  • DOI:
    10.1016/j.cap.2013.01.015
  • 发表时间:
    2013-07-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hyun;Jaewoo Lee;Changbum Lee;Joon;B. Jang;Jin;W. Yoon
  • 通讯作者:
    W. Yoon
A threshold-based frequency offset estimation scheme for OFDM systems
正交频分复用系统基于阈值的频偏估计方案
Reactions Between Liquid CaO-SiO2 Slags and Graphite Substrates
液态 CaO-SiO2 渣与石墨基材之间的反应
Assessment of attenuation of varicella‐zoster virus vaccines based on genomic comparison
基于基因组比较的水痘-带状疱疹病毒疫苗减毒评估
  • DOI:
    10.1002/jmv.28590
  • 发表时间:
    2023-02-18
  • 期刊:
  • 影响因子:
    12.7
  • 作者:
    Jae Yun Moon;Jina Seo;Jaewoo Lee;Daechan Park
  • 通讯作者:
    Daechan Park
Minimum-Drag Axisymmetric Bodies in the Supersonic/Hypersonic Flow Regimes
超音速/高超音速流态中的最小阻力轴对称体

Jaewoo Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

强壮前沟藻共生细菌降解膦酸酯产生促藻效应的分子机制
  • 批准号:
    42306167
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于复合编码脉冲串的水下主动隐蔽性探测新方法研究
  • 批准号:
    61271414
  • 批准年份:
    2012
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
半定松弛与非凸二次约束二次规划研究
  • 批准号:
    11271243
  • 批准年份:
    2012
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
高效率强壮消息鉴别码的分析与设计
  • 批准号:
    61202422
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
民航客运网络收益管理若干问题的研究
  • 批准号:
    60776817
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

CAREER: Enabling Robust and Adaptive Architectures through a Decoupled Security-Centric Hardware/Software Stack
职业:通过解耦的以安全为中心的硬件/软件堆栈实现鲁棒性和自适应架构
  • 批准号:
    2238548
  • 财政年份:
    2023
  • 资助金额:
    $ 52.96万
  • 项目类别:
    Continuing Grant
CAREER: Risk-Based Methods for Robust, Adaptive, and Equitable Flood Risk Management in a Changing Climate
职业:在气候变化中实现稳健、适应性和公平的洪水风险管理的基于风险的方法
  • 批准号:
    2238060
  • 财政年份:
    2023
  • 资助金额:
    $ 52.96万
  • 项目类别:
    Standard Grant
Commensal bacteria as vehicles for robust mucosal vaccination against lung pathogens
共生细菌作为针对肺部病原体的强力粘膜疫苗接种的载体
  • 批准号:
    10749817
  • 财政年份:
    2023
  • 资助金额:
    $ 52.96万
  • 项目类别:
CAREER: Robust and Adaptive Streaming Analytics for Sensorized Farms: Internet-of-Small-Things to the Rescue
职业:适用于传感农场的稳健且自适应的流分析:小型物联网的救援
  • 批准号:
    2146449
  • 财政年份:
    2022
  • 资助金额:
    $ 52.96万
  • 项目类别:
    Continuing Grant
CAREER: Towards Robust and Efficient High-Order Adaptive Computational Methods for Conservation Laws in Complex Geometries -- Analysis, Implementation, and Applications
职业:复杂几何守恒定律的稳健高效高阶自适应计算方法——分析、实现和应用
  • 批准号:
    0132967
  • 财政年份:
    2002
  • 资助金额:
    $ 52.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了