Collaborative Research: Frameworks: Community-Based Weather and Climate Simulation With a Global Storm-Resolving Model

合作研究:框架:基于社区的天气和气候模拟以及全球风暴解决模型

基本信息

  • 批准号:
    2005137
  • 负责人:
  • 金额:
    $ 278.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Global Earth System Models (ESMs) use mathematical equations to simulate both weather and climate. ESMs include the dynamics of the atmosphere, oceans, land surface, ice, and vegetation. They can be used to make predictions of use to the public and policymakers. Today’s ESMs use coarse grids with cells about 100 km wide. Important weather systems like thunderstorms are too small to be simulated with such grids. One way to improve ESMs is to use finer grids that can directly simulate thunderstorms, but such models can only be run on very powerful computers. This project, called EarthWorks, will create an ESM capable of resolving storms by taking advantage of recent developments in high performance computing. EarthWorks will also use artificial intelligence to improve and speed up the model, and state-of-the-art methods to limit the amount of data produced as the model runs. The EarthWorks ESM will be built by spinning off and modifying a copy of the most recent version of the widely used Community Earth System Model. The modified model will represent the atmosphere, the oceans, and the land surface on a single very high-resolution grid, with grid cells about 4 km wide. It will have improved forecast skill, and produce more realistic simulations of past, present, and future climates. The project will make the model and its output openly available for use by all scientists.The open-source Community Earth System Model (CESM) is both developed and applied to scientific problems by a large community of researchers. It is critical infrastructure for the U.S. climate research community. In the atmosphere and ocean components of the CESM, the adiabatic terms of the partial differential equations that express conservation of mass, momentum, and thermodynamic energy are solved numerically using what is called a dynamical core. Atmosphere and ocean models also include parametric representations, called parameterizations, that are designed to include the effects of storm and cloud processes that occur on scales too small to be represented on the model's grid. Despite decades of work by many scientists, today's parameterizations are still problematic and limit the utility of ESMs for many applications of societal relevance. Fortunately, recent advances in computer power have made it possible to parameterize less, by using grid spacings on the order of a few kilometers over the entire globe. These "global storm-resolving models" (GSRMs) can only be run on today's fastest computers. GSRMs are under very active development at a dozen or so modeling centers around the world. Unfortunately, however, the current formulation of the CESM prevents it from being run as a GSRM. This project, called EarthWorks, will create a new, openly available GSRM by spinning off and intensively modifying a copy of the CESM. To accomplish this goal, the researchers will use recently developed and closely related dynamical cores for the atmosphere and ocean. All components of the model will use the same very high-resolution grid. This high resolution will make it possible to eliminate the particularly troublesome parameterization of deep cumulus convection (i.e., thunderstorms), and thereby reduce systematic biases that plague current ESMs. Earthworks will exploit the pre-exascale and exascale technologies now being brought to market by high performance computing vendors. The new exascale ESM will run the most computationally intensive components on powerful graphics processor units (GPUs), and exploit node-level task parallelism to execute the rest of the model asynchronously. The component model codes are close to completion and are currently being tested on GPUs. EarthWorks will use a simplified component-coupling approach, incorporate machine learning where feasible, and leverage lossy compression techniques and parallel I/O tools to deal with the enormous data volumes that will be generated as the model runs. The completed model will be simple, powerful, and well documented. The project will apply it to pressing scientific problems in both numerical weather prediction and climate simulation. The model and its input datasets will be made openly available to the broad research community, via GitHub.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全球系统模型(ESMS)使用数学方程式来模拟天气和气候。 KM宽。对我们来说,提高ESM的一种方法是可以直接模拟Thunderate雷暴,但是此类模型只能在非常强大的计算机上运行。通过利用Recents II N高性能计算THE STAME模型的t版本将代表ATMOSPIRE,海洋和单个高分辨率网格上的土地表面,网格宽约4 km。和未来的气候。在CESM的大气和海洋成分中,使用所谓的动力学核心(称为动态核心)求解了质量的偏差等均值保护。在许多科学家的工作量表上发生的过程是有效的,并且限制了ESM的实用性,用于许多社会相关性的应用程序,使得参数能够降低整个全球的公里风暴解决模型”(GSRMS)只能在当今最快的计算机上运行。urrent配方CESM可防止其作为GSRM运行。该项目称为Earthworks,将通过旋转和加强来创建一个新的,公开的GSRM CESM的副本。通过高性能计算供应商,新的Exascale ESM将运行最密集的组件功能强大的图形SOR单元(GPU),并利用节点级任务来执行型号的其余部分。当前在GPU上进行了测试,并利用有损的压缩技术和I/O工具来处理随着模型运行而生成的巨大数据。通过GitHub,将公开向广泛的研究社区公开使用该模型及其输入数据集中的科学问题。和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulations With EarthWorks
使用 EarthWorks 进行模拟
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Randall;James Hurrell;Donald Dazlich;Lantao Sun;William Skamarock;Andrew Gettelman;Thomas Hauser;Sheri Mickelson;Mariana Vertenstein;Richard Loft
  • 通讯作者:
    Richard Loft
Advancing precipitation prediction using a new-generation storm-resolving model framework – SIMA-MPAS (V1.0): a case study over the western United States
  • DOI:
    10.5194/gmd-15-8135-2022
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Xingying Huang;A. Gettelman;W. Skamarock;P. Lauritzen;Miles Curry;A. Herrington;John T. Truesdale;M. Duda
  • 通讯作者:
    Xingying Huang;A. Gettelman;W. Skamarock;P. Lauritzen;Miles Curry;A. Herrington;John T. Truesdale;M. Duda
EarthWorks: The Computational Science Challenges of building an end-to- end, GPU-enabled, km-Scale Modeling System
EarthWorks:构建端到端、支持 GPU 的公里级建模系统的计算科学挑战
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Loft;S. Mickelson;T Hauser;M. Duda;D. Dickerson;S. Suresh;J. Clyne;J. Sun;C. Fisher;M. Vertenstein
  • 通讯作者:
    M. Vertenstein
Acceleration of the Parameterization of Unified Microphysics Across Scales (PUMAS) on the Graphics Processing Unit (GPU) With Directive‐Based Methods
  • DOI:
    10.1029/2022ms003515
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Jian Sun;J. Dennis;S. Mickelson;B. Vanderwende;A. Gettelman;K. Thayer‐Calder
  • 通讯作者:
    Jian Sun;J. Dennis;S. Mickelson;B. Vanderwende;A. Gettelman;K. Thayer‐Calder
A Scalable and Efficient Workflow for Compressing High-Resolution Earth System Model Data
用于压缩高分辨率地球系统模型数据的可扩展且高效的工作流程
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xu, Haiying;Loft, Richard;Paul, Kevin;Banihirwe, Anderson
  • 通讯作者:
    Banihirwe, Anderson
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Randall其他文献

CSCW: Discipline or Paradigm? A Sociological Perspective
CSCW:纪律还是范式?
  • DOI:
    10.1007/978-94-011-3506-1_23
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Hughes;David Randall;D. Shapiro
  • 通讯作者:
    D. Shapiro
The Prudential Public Sphere
  • DOI:
    10.5325/philrhet.44.3.0205
  • 发表时间:
    2011-09
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    David Randall
  • 通讯作者:
    David Randall
Biopoetics and Hermeneutics: The Postal Metaphor in Il Postino
生命诗学与诠释学:《Il Postino》中的邮政隐喻
Analysis of effects and usage indicators for a ICT-based fall prevention system in community dwelling older adults
基于ICT的跌倒预防系统对社区老年人的效果和使用指标分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Vaziri;Konstantin Aal;Y. Gschwind;K. Delbaere;Anne Weibert;J. Annegarn;H. D. Rosario;R. Wieching;David Randall;V. Wulf
  • 通讯作者:
    V. Wulf
The Universal Journalist
环球记者

David Randall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Randall', 18)}}的其他基金

Workshop on Future Storm-Resolving Configurations of Community Earth System Model (CESM); Fort Collins, Colorado; Two days in April 2023
社区地球系统模型(CESM)未来风暴解决配置研讨会;
  • 批准号:
    2242189
  • 财政年份:
    2023
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Standard Grant
Collaborative Research: A Teleconnection between the Tropical Madden-Julian Oscillation and Arctic Sudden Stratospheric Warming Events in Warm Climates
合作研究:热带马登-朱利安涛动与温暖气候下北极平流层突然变暖事件之间的遥相关
  • 批准号:
    1826643
  • 财政年份:
    2018
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Standard Grant
Implementation and evaluation of the unified parameterization in NCAR Community Atmospheric Model
NCAR社区大气模型统一参数化的实现与评估
  • 批准号:
    1538532
  • 财政年份:
    2016
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Standard Grant
CI-P: Cyber-Infrastructure for the Cloud-Climate Community
CI-P:云气候社区的网络基础设施
  • 批准号:
    1059323
  • 财政年份:
    2011
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Simulations of Anthropogenic Climate Change Using a Multi-Scale Modeling Framework
合作研究:使用多尺度建模框架模拟人为气候变化
  • 批准号:
    1049041
  • 财政年份:
    2011
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Tropical Variability in a New Generation of Coupled Climate Simulations with Explicitly Resolved Convection
合作研究:新一代耦合气候模拟中的热带变化与显式解析的对流
  • 批准号:
    1119999
  • 财政年份:
    2011
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Continuing Grant
PRAC Collaborative Research: Testing Hypotheses about Climate Prediction at Unprecedented Resolutions on the NSF Blue Waters System
PRAC 合作研究:在 NSF Blue Waters 系统上以前所未有的分辨率测试有关气候预测的假设
  • 批准号:
    0832705
  • 财政年份:
    2009
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Standard Grant
Center for Multi-Scale Modeling of Atmospheric Processes (MMAP)
大气过程多尺度模拟中心 (MMAP)
  • 批准号:
    0425247
  • 财政年份:
    2006
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Cooperative Agreement
Cloud Parameterization Frameworks
云参数化框架
  • 批准号:
    0415184
  • 财政年份:
    2004
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Continuing Grant
The Madden-Julian Oscillation in General Circulation Models: An Analysis of Factors Relevant to Its Initiation, Maintenance, and Suppression
大气环流模型中的马登-朱利安振荡:与其引发、维持和抑制相关的因素分析
  • 批准号:
    0224559
  • 财政年份:
    2002
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Standard Grant

相似国自然基金

多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶正则化半监督学习的多跟踪器框架模型及融合策略研究
  • 批准号:
    61571362
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
表示模型框架下高光谱遥感影像分类若干技术研究
  • 批准号:
    61571033
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
随机几何框架下的多层异构蜂窝网中物理层安全问题研究
  • 批准号:
    61401510
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
协作性公共管理视角下的草原碳汇管理框架设计及应用研究
  • 批准号:
    71363039
  • 批准年份:
    2013
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411297
  • 财政年份:
    2024
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411298
  • 财政年份:
    2024
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 278.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了